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Goals of Thrift
● Scalable, cross-language services development

● Allow developers to use the right language for their 
problem

● But talk to code written in other languages
– (across the wire or not)

● Without lots of performance overhead
● Without lots of developer pain
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Other technologies
● RPC  Implementations on UNIXes and other OSes starting in the 70s.  

Not cross platform.
● CORBA  Comprehensive. Object-centric. Complicated and 

heavyweight.  
● SOAP  XML-based => parsing + network overhead
● Protocol Buffers  Similar open source framework from Google

● Doesn't include server infrastructure
● Someone should do a presentation

● Avro (another) Apache framework
● Schemas defined in JSON
● Code gen not required
● Someone should do a presentation



  

History of Thrift so far
● developed at Facebook
● open sourced in April 2007 
● entered the Apache Incubator in May, 2008
● 2010-02-08 Thrift 0.6 released



  

Powered by Thrift
● www.facebook.com
● Apache Cassandra DB (client API)
● www.last.fm
● www.powerset.com
● www.recaptcha.com
● www.rapleaf.com
● www.amiestreet.com
● www.evernote.com
● www.esportnetwork.com
● www.openx.org/

http://www.facebook.com/
http://www.last.fm/
http://www.powerset.com/
http://www.recaptcha.com/
http://www.rapleaf.com/
http://www.evernote.com/
http://www.esportnetwork.com/


  

Language Bindings
● C++
● Java
● Python
● PHP
● Ruby
● Erlang
● Perl

● Haskell
● C#
● Cocoa
● JavaScript
● Node.js
● Smalltalk
● OCaml

● But:
● Not all language bindings support all protocols
● Documentation, tutorials are spotty for some languages



  

Architecture
●Pluggable protocols:

● Compact
● Binary
● JSON
● Debug
● ...

●Pluggable transports
● Socket
● File
● Memory
● ...



  

Server Infrastructure

● Provided servers:
● Simple
● ThreadPool
● NonBlocking

● One service per server



  

Dev process
● Write service specification
● Generate language-specific server classes from 

the spec
● Write the server
● Generate language-specific client classes from 

the spec
● Write the client



  

Example: service spec

/**
 * FaceSpace profile
 */
struct User {
  1: i32 id,
  2: string name,
  3: list<i32> friendIDs
}

/**
 * FaceSpace service
 */
service Service  {

   /**
    * Create a user

*/
   void create(1:User user),

   /**
    * Return the number of users in all of FaceSpace
    */
   i32 countUsers()

}



  

Example: code generation
● thrift --gen erl facespace.thrift
● thrift --gen rb facespace.thrift



  

Example: generated code (Erlang)
-module(facespace_types).

-include("facespace_types.hrl").

-export([struct_info/1]).
%% struct user

% -record(user, {id, name, friendIDs}).

struct_info('user') ->
  {struct, [{1, i32},
  {2, string},
  {3, {list, i32}}]}
;

struct_info('i am a dummy struct') -> undefined.
-module(service_thrift).
-behaviour(thrift_service).

-include("service_thrift.hrl").

-export([struct_info/1, function_info/2]).

struct_info('i am a dummy struct') -> undefined.
%%% interface
% create(This, User)
function_info('create', params_type) ->
  {struct, [{1, {struct, {'facespace_types', 'user'}}}]}
;
function_info('create', reply_type) ->
  {struct, []};
function_info('create', exceptions) ->
  {struct, []}
;
% countUsers(This)
function_info('countUsers', params_type) ->
  {struct, []}
;
function_info('countUsers', reply_type) ->
  i32;
function_info('countUsers', exceptions) ->
  {struct, []}
;
function_info(xxx, dummy) -> dummy.



  

Example: server code (in Erlang)
-module(server).
-include("service_thrift.hrl").
-export([start/0, start/1, handle_function/2,
         stop/1, create/1, countUsers/0]).

 
debug(Format, Data) ->
    error_logger:info_msg(Format, Data).

%service methods
create(User) ->
    {_, UserID, _, _} = User,

ets:insert('Users', {UserID, User}),
    debug("create(~p)",[User]),
    ok.

countUsers() ->
ets:info('Users', size).

%%infrastructure methods
start() ->
    start(9999).
start(Port) ->
    Handler   = ?MODULE,

ets:new('Users', [public, named_table]),
    debug("start",""),
    thrift_socket_server:start([{handler, Handler},
                                {service, service_thrift},
                                {port, Port},
                                {name, facespace_server}]).

stop(Server) ->
    thrift_socket_server:stop(Server).

handle_function(Function, Args) when is_atom(Function), is_tuple(Args) ->
    case apply(?MODULE, Function, tuple_to_list(Args)) of
        ok -> ok;
        Reply -> {reply, Reply}
    end.



  

Example: generated code (C++)
#ifndef facespace_TYPES_H
#define facespace_TYPES_H
#include <Thrift.h>
#include <protocol/TProtocol.h>
#include <transport/TTransport.h>
class User {
 public:
  static const char* ascii_fingerprint; // = "43193034EC8FD29153371776AF655
  static const uint8_t binary_fingerprint[16]; // = {0x43,0x19,0x30,0x34,0x
8F,0xD2,0x91,0x53,0x37,0x17,0x76,0xAF,0x65,0x5A,0x70};
  User() : id(0), name("") {
  }
  virtual ~User() throw() {}
  int32_t id;
  std::string name;
  std::vector<int32_t>  friendIDs;
  struct __isset {
    __isset() : id(false), name(false), friendIDs(false) {}
    bool id;
    bool name;
    bool friendIDs;
  } __isset;
  bool operator == (const User & rhs) const {
    if (!(id == rhs.id))
      return false;
    if (!(name == rhs.name))
      return false;
    if (!(friendIDs == rhs.friendIDs))
      return false;
    return true;
  }
  bool operator != (const User &rhs) const {
    return !(*this == rhs);
  }
  bool operator < (const User & ) const;
  uint32_t read(apache::thrift::protocol::TProtocol* iprot);
  uint32_t write(apache::thrift::protocol::TProtocol* oprot) const;
};
#endif



  

Example: generated code (C++)
#ifndef facespace_TYPES_H
#define facespace_TYPES_H

#include <Thrift.h>
#include <protocol/TProtocol.h>
#include <transport/TTransport.h>

class User {
 public:
  static const char* ascii_fingerprint; // = 
"43193034EC8FD29153371776AF655
  static const uint8_t binary_fingerprint[16]; // = 
{0x43,0x19,0x30,0x34,0x
8F,0xD2,0x91,0x53,0x37,0x17,0x76,0xAF,0x65,0x5A,0x70};

  User() : id(0), name("") {
  }

  virtual ~User() throw() {}

  int32_t id;
  std::string name;
  std::vector<int32_t>  friendIDs;

.....

#ifndef Service_H
#define Service_H

#include <TProcessor.h>
#include "facespace_types.h"

class ServiceIf {
 public:
  virtual ~ServiceIf() {}
  virtual void create(const User& user) = 0;
  virtual int32_t countUsers() = 0;
};

....



  

Example: server code (in C++)
class UserStorageHandler : virtual public UserStorageIf {
 public:
  UserStorageHandler() {
    // Your initialization goes here
  }

  void create(const UserProfile& user) {
    // Your implementation goes here
    printf("store\n");
  }

  int32_t count() {
    // Your implementation goes here
    printf("retrieve\n");
    return -1;
  }
};

int main(int argc, char **argv) {
  int port = 9999;
  shared_ptr<UserStorageHandler> handler(new UserStorageHandler());
  shared_ptr<TProcessor> processor(new UserStorageProcessor(handler));
  shared_ptr<TServerTransport> serverTransport(new TServerSocket(port));
  shared_ptr<TTransportFactory> transportFactory(new TBufferedTransportFactory());
  shared_ptr<TProtocolFactory> protocolFactory(new TBinaryProtocolFactory());
  TSimpleServer server(processor, serverTransport, transportFactory, protocolFactory);
  server.serve();
  return 0;
}



  

Example: server code (in Erlang)
-module(server).
-include("service_thrift.hrl").
-export([start/0, start/1, handle_function/2,
         stop/1, create/1, countUsers/0]).

 
debug(Format, Data) ->
    error_logger:info_msg(Format, Data).

%service methods
create(User) ->
    {_, UserID, _, _} = User,

ets:insert('Users', {UserID, User}),
    debug("create(~p)",[User]),
    ok.

countUsers() ->
ets:info('Users', size).

%%infrastructure methods
start() ->
    start(9999).
start(Port) ->
    Handler   = ?MODULE,

ets:new('Users', [public, named_table]),
    debug("start",""),
    thrift_socket_server:start([{handler, Handler},
                                {service, service_thrift},
                                {port, Port},
                                {name, facespace_server}]).

stop(Server) ->
    thrift_socket_server:stop(Server).

handle_function(Function, Args) when is_atom(Function), is_tuple(Args) ->
    case apply(?MODULE, Function, tuple_to_list(Args)) of
        ok -> ok;
        Reply -> {reply, Reply}
    end.



  

Example: client code (in ruby)
#!/usr/bin/env ruby
$:.push('../gen-rb')
$:.unshift '~/workspace/thrift-instant-r760184/lib/rb/lib'

require 'thrift'
require 'thrift/protocol/binaryprotocol'
require 'service'

begin
  host = ARGV[0] || 'localhost'
  port = ARGV[1] || 9999
 
  puts "Enter a username to create"
  while (username = readline)

#connect
transport = Thrift::BufferedTransport.new(Thrift::Socket.new(host, port))

     protocol = Thrift::BinaryProtocol.new(transport)
     client = Service::Client.new(protocol)

transport.open()

#create user
user = User.new()
user.name = username
user.id = rand(999999)
user.friendIDs = [1111]
print 'creating ', user.name
client.create(user)

#count users
count = client.countUsers()
print "count=", count, "\n"

  
#close
transport.close()

puts "Enter a username to create"    
  end
end



  

Example: client code (in python)

# Connect to the service (TCP sockets with binary protocol)
transport = TSocket.TSocket("localhost", 9999)
transport.open()
protocol = TBinaryProtocol.TBinaryProtocol(transport)
service = UserStorage.Client(protocol)

# Call the service to store a something
user = UserProfile(uid=1,
                name="Zark Muckerberg",
                nfriends="3755307”)
service.store(user) 

# Call our service API to retrieve something
n = service.countUsers()



  

demo



  

Try it: 
http://www.facebook.com/careers/puzzles.php

● http://www.facebook.com/careers/puzzles.php



  

Tooling support
● Ant task: http://code.google.com/p/thriftc-task/
● Maven plugin: https://github.com/dtrott/maven-

thrift-plugin
● Eclipse plugin: 

http://sourceforge.net/projects/thrift4eclipse/

http://code.google.com/p/thriftc-task/
http://sourceforge.net/projects/thrift4eclipse/


  

References
● http://thrift.apache.org/

● thrift download includes tutorial projects
● Technical paper: 

http://thrift.apache.org/static/thrift-20070401.pdf
● OCI article by Andrew Prunicki: 

http://jnb.ociweb.com/jnb/jnbJun2009.html
● Blog article by Alex Miller 

http://tech.puredanger.com/2011/05/27/serializa
tion-comparison/

http://thrift.apache.org/
http://jnb.ociweb.com/jnb/jnbJun2009.html


  

questions / comments
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