

Apache Thrift
http://thrift.apache.org

Dave DiFranco
david.difranco@oracle.com
ddif@alum.mit.edu

Goals of Thrift
● Scalable, cross-language services development

● Allow developers to use the right language for their
problem

● But talk to code written in other languages
– (across the wire or not)

● Without lots of performance overhead
● Without lots of developer pain

Evolution of interop technology?

2007 +: T hrift ,
 P

ro toco l B
u ffers ,

 Avro ...

2000 : S
O

A
P

1991 : C
O

R
B

A

1970 : R
P

C

Other technologies
● RPC Implementations on UNIXes and other OSes starting in the 70s.

Not cross platform.
● CORBA Comprehensive. Object-centric. Complicated and

heavyweight.
● SOAP XML-based => parsing + network overhead
● Protocol Buffers Similar open source framework from Google

● Doesn't include server infrastructure
● Someone should do a presentation

● Avro (another) Apache framework
● Schemas defined in JSON
● Code gen not required
● Someone should do a presentation

History of Thrift so far
● developed at Facebook
● open sourced in April 2007
● entered the Apache Incubator in May, 2008
● 2010-02-08 Thrift 0.6 released

Powered by Thrift
● www.facebook.com
● Apache Cassandra DB (client API)
● www.last.fm
● www.powerset.com
● www.recaptcha.com
● www.rapleaf.com
● www.amiestreet.com
● www.evernote.com
● www.esportnetwork.com
● www.openx.org/

http://www.facebook.com/
http://www.last.fm/
http://www.powerset.com/
http://www.recaptcha.com/
http://www.rapleaf.com/
http://www.evernote.com/
http://www.esportnetwork.com/

Language Bindings
● C++
● Java
● Python
● PHP
● Ruby
● Erlang
● Perl

● Haskell
● C#
● Cocoa
● JavaScript
● Node.js
● Smalltalk
● OCaml

● But:
● Not all language bindings support all protocols
● Documentation, tutorials are spotty for some languages

Architecture
●Pluggable protocols:

● Compact
● Binary
● JSON
● Debug
● ...

●Pluggable transports
● Socket
● File
● Memory
● ...

Server Infrastructure

● Provided servers:
● Simple
● ThreadPool
● NonBlocking

● One service per server

Dev process
● Write service specification
● Generate language-specific server classes from

the spec
● Write the server
● Generate language-specific client classes from

the spec
● Write the client

Example: service spec

/**
 * FaceSpace profile
 */
struct User {
 1: i32 id,
 2: string name,
 3: list<i32> friendIDs
}

/**
 * FaceSpace service
 */
service Service {

 /**
 * Create a user

*/
 void create(1:User user),

 /**
 * Return the number of users in all of FaceSpace
 */
 i32 countUsers()

}

Example: code generation
● thrift --gen erl facespace.thrift
● thrift --gen rb facespace.thrift

Example: generated code (Erlang)
-module(facespace_types).

-include("facespace_types.hrl").

-export([struct_info/1]).
%% struct user

% -record(user, {id, name, friendIDs}).

struct_info('user') ->
 {struct, [{1, i32},
 {2, string},
 {3, {list, i32}}]}
;

struct_info('i am a dummy struct') -> undefined.
-module(service_thrift).
-behaviour(thrift_service).

-include("service_thrift.hrl").

-export([struct_info/1, function_info/2]).

struct_info('i am a dummy struct') -> undefined.
%%% interface
% create(This, User)
function_info('create', params_type) ->
 {struct, [{1, {struct, {'facespace_types', 'user'}}}]}
;
function_info('create', reply_type) ->
 {struct, []};
function_info('create', exceptions) ->
 {struct, []}
;
% countUsers(This)
function_info('countUsers', params_type) ->
 {struct, []}
;
function_info('countUsers', reply_type) ->
 i32;
function_info('countUsers', exceptions) ->
 {struct, []}
;
function_info(xxx, dummy) -> dummy.

Example: server code (in Erlang)
-module(server).
-include("service_thrift.hrl").
-export([start/0, start/1, handle_function/2,
 stop/1, create/1, countUsers/0]).

debug(Format, Data) ->
 error_logger:info_msg(Format, Data).

%service methods
create(User) ->
 {_, UserID, _, _} = User,

ets:insert('Users', {UserID, User}),
 debug("create(~p)",[User]),
 ok.

countUsers() ->
ets:info('Users', size).

%%infrastructure methods
start() ->
 start(9999).
start(Port) ->
 Handler = ?MODULE,

ets:new('Users', [public, named_table]),
 debug("start",""),
 thrift_socket_server:start([{handler, Handler},
 {service, service_thrift},
 {port, Port},
 {name, facespace_server}]).

stop(Server) ->
 thrift_socket_server:stop(Server).

handle_function(Function, Args) when is_atom(Function), is_tuple(Args) ->
 case apply(?MODULE, Function, tuple_to_list(Args)) of
 ok -> ok;
 Reply -> {reply, Reply}
 end.

Example: generated code (C++)
#ifndef facespace_TYPES_H
#define facespace_TYPES_H
#include <Thrift.h>
#include <protocol/TProtocol.h>
#include <transport/TTransport.h>
class User {
 public:
 static const char* ascii_fingerprint; // = "43193034EC8FD29153371776AF655
 static const uint8_t binary_fingerprint[16]; // = {0x43,0x19,0x30,0x34,0x
8F,0xD2,0x91,0x53,0x37,0x17,0x76,0xAF,0x65,0x5A,0x70};
 User() : id(0), name("") {
 }
 virtual ~User() throw() {}
 int32_t id;
 std::string name;
 std::vector<int32_t> friendIDs;
 struct __isset {
 __isset() : id(false), name(false), friendIDs(false) {}
 bool id;
 bool name;
 bool friendIDs;
 } __isset;
 bool operator == (const User & rhs) const {
 if (!(id == rhs.id))
 return false;
 if (!(name == rhs.name))
 return false;
 if (!(friendIDs == rhs.friendIDs))
 return false;
 return true;
 }
 bool operator != (const User &rhs) const {
 return !(*this == rhs);
 }
 bool operator < (const User &) const;
 uint32_t read(apache::thrift::protocol::TProtocol* iprot);
 uint32_t write(apache::thrift::protocol::TProtocol* oprot) const;
};
#endif

Example: generated code (C++)
#ifndef facespace_TYPES_H
#define facespace_TYPES_H

#include <Thrift.h>
#include <protocol/TProtocol.h>
#include <transport/TTransport.h>

class User {
 public:
 static const char* ascii_fingerprint; // =
"43193034EC8FD29153371776AF655
 static const uint8_t binary_fingerprint[16]; // =
{0x43,0x19,0x30,0x34,0x
8F,0xD2,0x91,0x53,0x37,0x17,0x76,0xAF,0x65,0x5A,0x70};

 User() : id(0), name("") {
 }

 virtual ~User() throw() {}

 int32_t id;
 std::string name;
 std::vector<int32_t> friendIDs;

.....

#ifndef Service_H
#define Service_H

#include <TProcessor.h>
#include "facespace_types.h"

class ServiceIf {
 public:
 virtual ~ServiceIf() {}
 virtual void create(const User& user) = 0;
 virtual int32_t countUsers() = 0;
};

....

Example: server code (in C++)
class UserStorageHandler : virtual public UserStorageIf {
 public:
 UserStorageHandler() {
 // Your initialization goes here
 }

 void create(const UserProfile& user) {
 // Your implementation goes here
 printf("store\n");
 }

 int32_t count() {
 // Your implementation goes here
 printf("retrieve\n");
 return -1;
 }
};

int main(int argc, char **argv) {
 int port = 9999;
 shared_ptr<UserStorageHandler> handler(new UserStorageHandler());
 shared_ptr<TProcessor> processor(new UserStorageProcessor(handler));
 shared_ptr<TServerTransport> serverTransport(new TServerSocket(port));
 shared_ptr<TTransportFactory> transportFactory(new TBufferedTransportFactory());
 shared_ptr<TProtocolFactory> protocolFactory(new TBinaryProtocolFactory());
 TSimpleServer server(processor, serverTransport, transportFactory, protocolFactory);
 server.serve();
 return 0;
}

Example: server code (in Erlang)
-module(server).
-include("service_thrift.hrl").
-export([start/0, start/1, handle_function/2,
 stop/1, create/1, countUsers/0]).

debug(Format, Data) ->
 error_logger:info_msg(Format, Data).

%service methods
create(User) ->
 {_, UserID, _, _} = User,

ets:insert('Users', {UserID, User}),
 debug("create(~p)",[User]),
 ok.

countUsers() ->
ets:info('Users', size).

%%infrastructure methods
start() ->
 start(9999).
start(Port) ->
 Handler = ?MODULE,

ets:new('Users', [public, named_table]),
 debug("start",""),
 thrift_socket_server:start([{handler, Handler},
 {service, service_thrift},
 {port, Port},
 {name, facespace_server}]).

stop(Server) ->
 thrift_socket_server:stop(Server).

handle_function(Function, Args) when is_atom(Function), is_tuple(Args) ->
 case apply(?MODULE, Function, tuple_to_list(Args)) of
 ok -> ok;
 Reply -> {reply, Reply}
 end.

Example: client code (in ruby)
#!/usr/bin/env ruby
$:.push('../gen-rb')
$:.unshift '~/workspace/thrift-instant-r760184/lib/rb/lib'

require 'thrift'
require 'thrift/protocol/binaryprotocol'
require 'service'

begin
 host = ARGV[0] || 'localhost'
 port = ARGV[1] || 9999

 puts "Enter a username to create"
 while (username = readline)

#connect
transport = Thrift::BufferedTransport.new(Thrift::Socket.new(host, port))

 protocol = Thrift::BinaryProtocol.new(transport)
 client = Service::Client.new(protocol)

transport.open()

#create user
user = User.new()
user.name = username
user.id = rand(999999)
user.friendIDs = [1111]
print 'creating ', user.name
client.create(user)

#count users
count = client.countUsers()
print "count=", count, "\n"

#close
transport.close()

puts "Enter a username to create"
 end
end

Example: client code (in python)

Connect to the service (TCP sockets with binary protocol)
transport = TSocket.TSocket("localhost", 9999)
transport.open()
protocol = TBinaryProtocol.TBinaryProtocol(transport)
service = UserStorage.Client(protocol)

Call the service to store a something
user = UserProfile(uid=1,
 name="Zark Muckerberg",
 nfriends="3755307”)
service.store(user)

Call our service API to retrieve something
n = service.countUsers()

demo

Try it:
http://www.facebook.com/careers/puzzles.php

● http://www.facebook.com/careers/puzzles.php

Tooling support
● Ant task: http://code.google.com/p/thriftc-task/
● Maven plugin: https://github.com/dtrott/maven-

thrift-plugin
● Eclipse plugin:

http://sourceforge.net/projects/thrift4eclipse/

http://code.google.com/p/thriftc-task/
http://sourceforge.net/projects/thrift4eclipse/

References
● http://thrift.apache.org/

● thrift download includes tutorial projects
● Technical paper:

http://thrift.apache.org/static/thrift-20070401.pdf
● OCI article by Andrew Prunicki:

http://jnb.ociweb.com/jnb/jnbJun2009.html
● Blog article by Alex Miller

http://tech.puredanger.com/2011/05/27/serializa
tion-comparison/

http://thrift.apache.org/
http://jnb.ociweb.com/jnb/jnbJun2009.html

questions / comments

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

