Apache Thrift

http://thrift.apache.org

Dave DiFranco
david.difranco@oracle.com
ddif@alum.mit.edu

Goals of Thrift

» Scalable, cross-language services development

» Allow developers to use the right language for their
problem

« But talk to code written in other languages
- (across the wire or not)
* Without lots of performance overhead

« Without lots of developer pain

2007+: Thrift,
Protocol Buffers,
Avro...

2000: SOAP

1991: CORBA

1970: RPC

Evolution of interop technology?

Other technologies

RPC Implementations on UNIXes and other OSes starting in the 70s.
Not cross platform.

CORBA Comprehensive. Object-centric. Complicated and
heavyweight.

SOAP XML-based => parsing + network overhead

Protocol Buffers Similar open source framework from Google

« Doesn't include server infrastructure

« Someone should do a presentation
Avro (another) Apache framework

 Schemas defined in JSON

« Code gen not required
« Someone should do a presentation

History of Thrift so far

» developed at Facebook

* open sourced in April 2007

* entered the Apache Incubator in May, 2008
e 2010-02-08 Thrift 0.6 released

Powered by Thrift

www.facebook.com

Apache Cassandra DB (client API)
www.last.fm

Www.powerset.com
www.recaptcha.com
www.rapleaf.com
www.amiestreet.com
www.evernote.com
www.esportnetwork.com
www.openx.org/

http://www.facebook.com/
http://www.last.fm/
http://www.powerset.com/
http://www.recaptcha.com/
http://www.rapleaf.com/
http://www.evernote.com/
http://www.esportnetwork.com/

Language Bindings

o C++ » Haskell

» Java o C#

* Python » Cocoa

« PHP e JavaScript
* Ruby * Node.js

* Erlang » Smalltalk
* Perl « OCaml

e But:

* Not all language bindings support all protocols
« Documentation, tutorials are spotty for some languages

Architecture

Client Server *Pluggable protocols:
Your Code Your Code ° Com paCt
; . 1E * Binary
A ,Gegeirjated(° JSON
e oQe
. h » Debug

*Pluggable transports
* Socket
* File
 Memory

—

Server Infrastructure

* Provided servers:
e Simple
* ThreadPool
* NonBlocking
* One service per server

Dev process
* Write service specification

* Generate language-specific server classes from
the spec

 Write the server

» Generate language-specific client classes from
the spec

 Write the client

Example: service spec

/**
* FaceSpace profile
*/
struct User {
1: 132 id,
2: string name,
3: 1list<i32> friendIDs

/**
* FaceSpace service
*/
service Service {
/**
* Create a user
*/
vold create(l:User user),
/**
* Return the number of users in all of FaceSpace
*/

132 countUsers ()

Example: code generation

e thrift --gen erl facespace.thrift
o thrift --gen rb facespace.thrift

Example: generated code (Erlang)

-module (facespace types) .
—include ("facespace types.hrl").

—export ([struct info/1]).

Q

%% struct user

o°

-record (user, {id, name, friendIDs}).

struct info('user') ->
{struct, [{1, i32},
{2, string},
{3, {list, 1i32}}]}

’

struct info('i am a dummy struct') -> undefined.

-module (service thrift).
-behaviour (thrift service).

-include ("service thrift.hrl").
—export ([struct info/1, function info/2]).

truct info('i am a dummy struct') -> undefined.
% interface
% create(This, User)
function info('create', params type) ->
{struct, [{1l, {struct, {'facespace types', 'user'}}}]}

function info('create', reply type) ->

(

{struct, []};

function info('create', exceptions) ->
{struct, T[]}

% countUsers (This)

function info('countUsers', params type) ->
{struct, T[]}

function info ('countUsers', reply type) ->
i32; B

function info('countUsers', exceptions) ->
{struct, []}

14

| function info (xxx, dummy) -> dummy.

Example: server code (in Erlang)

-module (server) .

—include ("service thrift.hrl").

—export ([start/0, start/1l, handle function/2,
stop/1l, create/l, countUsers/0]).

debug (Format, Data) ->
error logger:info msg(Format, Data).

%service methods
create (User) ->
{ , UserID, , } = User,
ets:insert ('Users', {UserID, User}),
debug ("create (~p)", [User]),
ok.

countUsers () ->
ets:info ('Users', size).

$%infrastructure methods

start () ->
start (9999) .
start (Port) ->
Handler = ?MODULE,

ets:new ('Users', [public, named table]),

debug ("start",""),

thrift socket server:start([{handler, Handler},
{service, service thrift},
{port, Port},
{name, facespace server}]).

stop (Server) ->
thrift socket server:stop(Server).

handle function (Function, Args) when is atom(Function), is tuple(Args) ->
case apply (?MODULE, Function, tuple to list (Args)) of
ok -> ok;

Reply -> {reply, Reply}
end.

Example: generated code (C++

#ifndef facespace TYPES H
#define facespace TYPES H

#include <Thrift.h>
#include <protocol/TProtocol.h>
#include <transport/TTransport.h>

class User {
public:
static const char* ascii fingerprint; // = "43193034EC8FD29153371776AF655
static const uint8 t binary fingerprint([16]; // = {0x43,0x19,0x30,0x34,0x
8F, 0xD2,0x91,0x53,0x37,0x17,0x76,0xAF, 0x65,0x5A,0x70};

User () : id(0), name("") {

}
virtual ~User () throw() {}
int32 t id;

std::string name;
std::vector<int32 t> friendIDs;

struct _ isset ({
__isset() : id(false), name(false), friendIDs (false) ({}
bool id;

bool name;
bool friendIDs;
} _ isset;

bool operator == (const User & rhs) const {
if (! (id == rhs.id))
return false;
if (! (name == rhs.name))
return false;
if (! (friendIDs == rhs.friendIDs))
return false;
return true;

}

bool operator != (const User &rhs) const {
return ! (*this == rhs);

}

bool operator < (const User &) const;

uint32 t read(apache::thrift::protocol::TProtocol* iprot);
uint32 t write (apache::thrift::protocol::TProtocol* oprot) const;
bi
#endif

Example: generated code (C++)

#ifndef facespace TYPES H
#define facespace TYPES H

#include <Thrift.h>
#include <protocol/TProtocol.h>
#include <transport/TTransport.h>

class User {
public:

static const char* ascii fingerprint; // =
"43193034EC8FD29153371776AF655

static const uint8 t binary fingerprint[l6]; // =
{0x43,0x19,0x30,0x34,0x
8F,0xD2,0x91,0x53,0x37,0x17,0x76, 0xAF,0x65,0x5A,0x70};

User () : id(0), name("") {

}

virtual ~User () throw() {}
int32 t id;

std::string name;
std::vector<int32 t> friendIDs;

#ifndef Service H
#define Service H

#include <TProcessor.h>
#include "facespace types.h"

class ServiceIf {

public:
virtual ~ServiceIf () {}
virtual void create(const Useré& user) = 0;

virtual int32 t countUsers() = 0;

}s

Example: server code (in C++)

class UserStorageHandler : virtual public UserStoragelf {
public:
UserStorageHandler() {
/I Your initialization goes here

}

void create(const UserProfile& user) {
// Your implementation goes here
printf("store\n");

}

int32_t count() {
I/l Your implementation goes here
printf("retrieve\n");
return -1;

}
%

int main(int argc, char **argv) {
int port = 9999;
shared_ptr<UserStorageHandler> handler(new UserStorageHandler());
shared_ptr<TProcessor> processor(new UserStorageProcessor(handler));
shared_ptr<TServerTransport> serverTransport(new TServerSocket(port));
shared_ptr<TTransportFactory> transportFactory(new TBufferedTransportFactory());
shared_ptr<TProtocolFactory> protocolFactory(new TBinaryProtocolFactory());
TSimpleServer server(processor, serverTransport, transportFactory, protocolFactory);
server.serve();
return O;

Example: server code (in

-module (server) .

—include ("service thrift.hrl").

—export ([start/0, start/1l, handle function/2,
stop/1, create/l, countUsers/0]).

debug (Format, Data) ->
error logger:info msg(Format, Data).

%$service methods

create (User) ->
{ , UserID, , } = User,
ets:insert ('Users', {UserID, User}),
debug ("create (~p)", [User]),
ok.
countUsers () ->

ets:info('Users', size).

$%infrastructure methods

start () ->
start (9999) .
start (Port) ->
Handler = ?MODULE,
ets:new ('Users', [public, named table]),

debug ("start",""),

thrift socket server:start([{handler, Handler},
{service, service thrift},
{port, Port},
{name, facespace server}]).

stop (Server) ->
thrift socket server:stop(Server).

handle function(Function, Args) when is atom(Function), is tuple (Args) ->

case apply (?MODULE, Function, tuple to list(Args)) of
ok -> ok;
Reply -> {reply, Reply}

end.

Erlang)

Example: client code (in ruby)

#!/usr/bin/env ruby
S:.push('../gen-rb"'")
$:.unshift '~/workspace/thrift-instant-r760184/1ib/rb/1ib’

require 'thrift'
require 'thrift/protocol/binaryprotocol’
require 'service'

begin
host = ARGV[0] || '"localhost'
port = ARGV[1] || 9999

puts "Enter a username to create"
while (username = readline)
#connect
transport = Thrift::BufferedTransport.new (Thrift::Socket.new(host, port))
protocol = Thrift::BinaryProtocol.new (transport)
client = Service::Client.new(protocol)
transport.open ()

#create user

user = User.new()

user.name = username

user.id = rand(999999)
user.friendIDs = [1111]
print 'creating ', user.name
client.create (user)

#count users
count = client.countUsers ()
print "count=", count, "\n"

#close
transport.close ()

puts "Enter a username to create"
end
end

Example: client code (in python)

Connect to the service (TCP sockets with binary protocol)
transport = TSocket. TSocket("localhost", 9999)
transport.open()

protocol = TBinaryProtocol. TBinaryProtocol(transport)
service = UserStorage.Client(protocol)

Call the service to store a something
user = UserProfile(uid=1,
name="Zark Muckerberg",
nfriends="3755307")
service.store(user)

Call our service API to retrieve something
n = service.countUsers()

demo

Try it:
http://www.facebook.com/careers/puzzles.php

Do you like puzzles? So do we.

If you love puzzies ke we do, become a fan of the new Puzzle Master Facebook Page . Notes are Submission directions
regularty posted to answer guestions, explain puzzles, and announce new things. Whie you're
here, try your hand at the following puzzies. The larger the difficulty, the harder it gets (hors

Al subrmissions must execute in a *MIX type environment

d'oeuvres are simple tests to hielp you out). (sorry, no Windows spedific solutions are accepted), You are
not guaranteed any libraries or plugins beyond what is part
% Puzzles Difficulty Keyword of the language finterpreter itself. The following languages
ted:
Hoppity Hop! & Hors doeuvre hoppity dre actep

GNU C/C++4.23

Meep meap! E:’ Hors d'oeuvre mEepmesn Ericsson Erlang 5.5.5
GHC Haskell 6.8.2
Liar, Liar T Snack iariiar Sun Java 1.5.0_15
INRIA OCaml 3.10.0
Breathalyzer W Snack breathalyzer Perl 5.8.8
PHP 5.2.4
Gattaca B Snack gattaca Python 2.5.2
Ruby 1.8.6
Simon Says i Snack simonsays Some puzzles may require being solved with the following
libraries:
Dance Battle T snack dancebattle Thrift r760184
It's A small World i Snack smallworld .
Solved and got hired
User Bin Crash i Snack usrhincrash
Jonathan Hsu
Rush Hour TF Meal rushhour Is the proud owner of the Puzzle Python,
Battleship E:} Maal battieship .
Refri tor Mad frid d
tigerator Madness Ef} Meal idgemadnzss Alan McConnell
Peak Traffic ik Meal peaktraffic I've eeen puzzles you people wouldn't belisve.

We Are The Swarm ik Meal SWAMM

Tooling support

» Ant task: http://code.google.com/p/thriftc-task/

 Maven plugin: https://github.com/dtrott/maven-
thrift-plugin

* Eclipse plugin:
http://sourceforge.net/projects/thrift4eclipse/

http://code.google.com/p/thriftc-task/
http://sourceforge.net/projects/thrift4eclipse/

References

 http://thrift.apache.org/
o thrift download includes tutorial projects

* Technical paper:
http://thrift.apache.org/static/thrift-20070401.pdf

* OCI article by Andrew Prunicki:
http://jnb.ociweb.com/jnb/jnbJun2009.html

* Blog article by Alex Miller
http://tech.puredanger.com/2011/05/27/serializa
tion-comparison/

http://thrift.apache.org/
http://jnb.ociweb.com/jnb/jnbJun2009.html

guestions / comments

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

