
VMap
a versioned Map implementation

May 2011

R. Mark Volkmann
mark@ociweb.com

VMap

Origin of the Idea

• Driving home from Columbia after visiting son

• Wife sleeping so can’t play radio

• Thinking about functional programming

• Thinking about hash tables, a.k.a. maps

2

invented in 1953 by Luhn and
independently by Amdahl,

Boehme, Rochester, Samuel

VMap

The Problem

• Thinking about how they conflict
• FP avoids mutable things

• maps are mutable

• Want to be able to
• write functions that take maps as parameters

and return a new map that is
a modified version of the one passed in

• Is there a way to implement
an efficient, immutable hash table?

3

VMap

Ignorance Is Bliss

• Really into Clojure a little over two years ago

• Forgot that Clojure already solved this problem
• PersistentHashMap and PersistentHashSet

• uses wide tries (up to 32 children)

• from Wikipedia, a trie is “an ordered tree data structure
that is used to store an associative array”

• based on the paper “Ideal Hash Trees” by Phil Bagwell

• So my solution
• is nothing like the Clojure solution

• is a variation on the typical hash table implementation

4

VMap

Sets From Maps

• Can implement sets from maps

• Values are booleans

• Slight optimization by
• using boolean primitives instead of Boolean objects

• ignoring values

5

VMap

Simple Approach

• Methods that normally mutate
return a mutated copy
instead of changing the original
• add/put

• delete/remove

• Stupid idea!
• slow

• uses too much memory

• Is there a way that one “version” of a map
can share memory with another version?

6

VMap

Typical Map Implementation

• Buckets
• array of chains

• Chains
• linked list of entry objects

• Entry objects
• hold hash code of key, reference to key, reference to value

and reference to next entry

• Key objects
• implement a “hashCode” method

• used to locate the correct bucket

• implement an “equals” method

• used in chain searches to find the entry object for a given key

7

Mutable!

VMap

Steps to Add Key/Value

• Compute hash code of key

• Mod hash code by # of buckets
to select bucket

• Walk entries in chain
searching for an entry with an equal key

• If found, change value of existing entry

• Otherwise add new entry

8

VMap

In Code

• Ruby
• map[key] = value

• Java
• map.put(key, value);

• Objective-C
• [map setObject: value forKey: key];

9

VMap

Steps to Find Value of a Key

• Compute hash code of key

• Mod hash code by # of buckets
to select bucket

• Walk entries in chain
searching for an entry with an equal key

• If found, return value of existing entry

• Otherwise return null

10

VMap

In Code

• Ruby
• value = map[key]

• Java
• value = map.get(key);

• Objective-C
• value = [map objectForKey: key];

11

VMap

Rehashing

• As entries are added,
average length of chains grows

• Lookups take longer due to
sequential search of chains

• Rehashing fixes this by creating more buckets
and redistributing entries into new, shorter chains
• reason why hash codes are saved - avoids recomputing

• new number of buckets is typically old*2 + 1

• mod of hash code and new number of buckets locates new chain

12

VMap

How To Share Versions?

• Change entry objects to hold
a chain of versioned values!
• newest values at beginning since more likely to be retrieved

13

when a value is removed,
a new versioned value is
added with a value of null

VMap

New VMap Instances

• Modifying a VMap creates a new instances

• But each new VMap instance can share
an “internal map”
• picture on previous slide

• Each VMap instance stores
• version number

• reference to internal map

• size - to avoid recomputing each time it is requested

14

VMap

Rehashing Strategy

• Automatically rehash when
entry count / bucket count > 0.75
• means that on average 75% of the buckets

contain one entry in their chain

• of course many will contain more than one entry
and many won’t contain any entries

• Tries to avoid having many chains
containing more than one entry
• those require sequential searching

15

VMap

Version Limit

• Currently the type of version numbers is int

• Can’t create more than 2^31 - 1 versions
• 2,147,483,647 > 2 billion

• Need more than 2 billion versions?

• Could use long instead
• 2^63 - 1 = 9,223,372,036,854,775,807 > 9 quintillion

• Other map implementations don’t have a limit

• Is this a deal breaker?

16

VMap

Initial Implementation

• In Java because I felt most confident
in getting it right there
• adding support for generics greatly increased code complexity

• But most Java developers
don’t care about immutability
• need to port to functional languages

• Lots of unit tests

• Performance tests compare to
• Java HashMap and HashSet

• Clojure PersistentHashMap and PersistentHashSet

17

VMap

Simple Example
VMap<String, Integer> map0 = new VHashMap<String, Integer>();

VMap<String, Integer> map1 = map0.put("foo", 1);

VMap<String, Integer> map2 = map1.put("bar", 2);

VMap<String, Integer> map3 = map2.delete("foo");

VMap<String, Integer> map4 = map3.put("bar", 3);

VMap<String, Integer> map5 = map4.put("foo", 4);

18

map0 is empty

map0 is still empty.
map1 only contains the key “foo”.

map0 is still empty.
map1 still only contains the key “foo”.
map2 contains the keys “foo” and “bar”.

map0 is still empty.
map1 still only contains the key “foo”.
map2 still contains the keys “foo” and “bar”.
map3 only contains the key “bar”.

map0 is still empty.
map1 still only contains the key “foo”.
map2 still contains the keys “foo” and “bar”.
map3 still only contains the key “bar”.
map4 contains the key “bar”,
but with a different value than in map2.

map0 is still empty.
map1 still only contains the key “foo”.
map2 still contains the keys “foo” and “bar”.
map3 still only contains the key “bar”.
map4 still contains the key “bar”,
but with a different value than in map2.
map5 contains the keys “foo” and “bar”,
but “foo” has a different value than in map1 and map2.

VMap

Multiple Values in a Version
// Using a set.

VSet<String> set1 =

 new VHashSet<String>("red", "orange", "yellow");

VSet<String> set2 = set.add("green", "blue", "purple");

// Using a map.

VMap<String, Integer> map =

 new VHashMap<String, Integer>();

map.put(

 new Pair<String, Integer>("foo", 1),

 new Pair<String, Integer>("bar", 2),

 new Pair<String, Integer>("baz", 3));

19

set2 contains all six colors

there is also a constructor
that takes a variable number
of Pair objects

VMap

Which Versioned Values?

• When performing a lookup
in a particular VMap instance,
which versioned values should be considered?

• A given VMap instance can use values
from its ancestor maps
• lower version number, but not necessarily all lower versions

• version 6 may derive from version 4 which derives from 1 and 0

• values are in order from newest to oldest version

• sequential search, but don’t need to search far in the common case

• tend to want newer values more than older ones

• tend to not have a large number of values for the same key

20

VMap

Recording Ancestors

• How does a VMap instance record its ancestors?
• Java implementation using java.util.BitSet

• version numbers are used as indexes

• uses an array of longs that grows automatically as needed

• BitSets are large when many versions are created
• 1 million versions => BitSet with 15,625 longs

• But VMap instances can share a BitSet
• just need to be careful to only check versions of indexes

that are <= instance version

21

VMap

Searching Versioned Values
VersionValue<V> vv = firstVV; // of an entry

while (vv != null) {

 if (vv.version == version.number) return vv;

 if (vv.version < version.number &&

 version.ancestors.get(vv.version)) {

 return vv;

 }

 vv = vv.next;

}

return null;

22

the BitSet

VMap

Thread Safe?

• Lots of synchronized methods

• Performance tests pay the cost
for all those locks

• Could use a code review

23

VMap

Performance Tests ...

• Tested using full text of four classic books

24

Title Words Unique

Alice in
Wonderland

26,388 3,153

Adventures of
Tom Sawyer

70,040 8,761

A Tale of
Two Cities

135,820 11,671

War and Peace 562,177 21,843

VMap

Map Performance Tests

• Data
• 1st key is “firstKey”; 1st value is first word in book

• 2nd key is 1st word in book; 2nd value is 2nd word in book

• and so on

• Steps
• get list of key/value pairs (not included in timing)

• create empty map

• populate map from pairs

• retrieve the value for each key (lookup) and verify

• Other details
• perform a priming run for each map implementation

• capture time of second run for each map implementation

25

For “War and Peace” this results in
30,762 values for the key “the”!

VMap

Set Performance Tests

• Data
• ordered collection of all words in book

• not a set, so includes duplicates

• Steps
• get ordered list of words (not included in timing)

• create an empty set

• add each of the words to the set one at a time

• verify that the set contains each of the words (lookup)

• Other details
• perform a priming run for each set implementation

• capture time of second run for each set implementation

26

VMap

Study This Map!

27

VMap

Alice in
Wonderland

Adventures of
Tom Sawyer

A Tale of
Two Cities

War and
Peace

java.util.HashMap 2 1 3 6 1 7 14 4 18 89 6 95

clojure.lang.PersistentHashMap 25 3 28 46 2 48 251 3 254 658 9 667

com.ociweb.collection.VHashMap 10 5 15 24 8 32 51 5 56 271 17 288

java.util.HashSet 8 3 11 17 5 22 34 15 49 91 75 166

clojure.lang.PersistentHashSet 32 3 35 95 7 102 85 22 107 149 110 259

com.ociweb.collection.VHashSet 6 4 10 16 11 27 39 36 75 154 113 267

Performance Results

28

numbers are in milliseconds;
1st is time to load data; 2nd is time to lookup values; 3rd is total

VMap

Conclusions

• Can’t compete with java.util versions
• but those are mutable

• Much faster loading times than Clojure versions
• but advantage becomes less when number of entries gets very large

• Slower lookup times than Clojure versions
• but that is a much smaller part of the total than load time

• not good though since most apps will
perform more lookups than loads

• Need to verify thread safety

• Maybe more optimizations can be made

29

VMap

What Do You Think?

• Has a similar idea already been evaluated?

• Is this idea worth pursuing further?

• Do you have ideas for further optimizations?

• What programming language communities
would value a port of this?

• On GitHub - https://github.com/mvolkmann/VMap

• Send feedback to mark@ociweb.com

• Thanks for listening!

30

