VMap

a versioned Map implementation
May 201 |

R. Mark Volkmann
mark@ociweb.com

OBJECT COMPUTING, INC.

Origin of the Idea

Driving home from Columbia after visiting son
Wife sleeping so can’t play radio

Thinking about functional programming

invented in 1953 by Luhn and

. . ind dently by Amdabhl,
Thinking about hash tables, a.k.a. maps < 5 EE

VMap 2 \ I

OgJjecT COMPUTING, INC.

The Problem

® Thinking about how they conflict

® FP avoids mutable things

® maps are mutable

® \Want to be able to

® write functions that take maps as parameters
and return a new map that is
a modified version of the one passed in

® |s there a way to implement
an efficient, immutable hash table?

VMap 3

ooooooooo

VMap

lsnorance Is Bliss

® Really into Clojure a little over two years ago

® Forgot that Clojure already solved this problem
® PersistentHashMap and PersistentHashSet

® uses wide tries (up to 32 children)

® from Wikipedia, a trie is “an ordered tree data structure
that is used to store an associative array”

® based on the paper “ldeal Hash Trees” by Phil Bagwell

® So my solution

® s nothing like the Clojure solution

® s a variation on the typical hash table implementation

VMap

Sets From Maps

® Can implement sets from maps
® Values are booleans

® Slight optimization by
® using boolean primitives instead of Boolean objects

® ignoring values

Simple Approach

® Methods that normally mutate
return a mutated copy
instead of changing the original
® add/put

® delete/remove

® Stupid idea!

® slow

® uses too much memory

® |s there a way that one “version” of a map
can share memory with another version?

CCCCCCCCCCCCCCCCCCCC

VMap

Typical Map Implementation

0

1

—’I nc | Key |value | next I-—Pl nc | Key |value | next I

® Buckets
® array of chains
® Chains

—| nc | key |value | next |

® linked list of entry objects

® Entry objects

® hold hash code of key, reference to key, reference to value

and reference to next entry

e Key objects

2
3
4
5
6
—

® implement a “hashCode” method

° used to locate the correct bucket

® implement an “equals” method

o used in chain searches to find the entry object for a given key

VMap

Steps to Add Key/Value

Compute hash code of key

Mod hash code by # of buckets
to select bucket

Walk entries in chain
searching for an entry with an equal key

If found, change value of existing entry

Otherwise add new entry

OOOOOOOOOOOOOOOOOOOO

VMap

In Code

e Ruby

® mapl[key] = wvalue
® Java

® map.put(key, wvalue);
® Obijective-C

® [map setObject: value forKey: key];

VMap

Steps to Find Value of a Key

Compute hash code of key

Mod hash code by # of buckets
to select bucket

Walk entries in chain
searching for an entry with an equal key

If found, return value of existing entry

Otherwise return null

OOOOOOOOOOOOOOOOOOO

VMap

e Ruby

e value

® Java

e value

In Code

map [key]

map.get (key) ;

® Objective-C

® value

[map objectForKey: key];

Rehashing

® As entries are added,
average length of chains grows

® | ookups take longer due to
sequential search of chains

® Rehashing fixes this by creating more buckets
and redistributing entries into new, shorter chains

® reason why hash codes are saved - avoids recomputing

® new number of buckets is typically old*2 + |

® mod of hash code and new number of buckets locates new chain

VMap 12

ooooooooo

How To Share Versions!?

® Change entry objects to hold
a chain of versioned values!

® newest values at beginning since more likely to be retrieved

0

1 —>|nc|ke¥|w|next|—>|hc|kex|w|next|
|vers|on |va|ue | next | |verSion | value | next |
'l"cl"eylwlne’“l |verston!value! nextl

I version |va|ue | next I | version | value | next |

when a value is removed,

2
3
4
5
6
——

a new versioned value is
added with a value of null

" ol
-) I
VMap 13 \

OgJjecT COMPUTING, INC.

VMap

New VMap Instances

® Modifying aVMap creates a new instances

® But each new VMap instance can share
an “internal map”

® picture on previous slide

® FEachVMap instance stores
® version number
® reference to internal map

® size - to avoid recomputing each time it is requested

VMap

Rehashing Strategy

® Automatically rehash when
entry count / bucket count > 0.75

® means that on average 75% of the buckets
contain one entry in their chain

° of course many will contain more than one entry
and many won’t contain any entries

® Tries to avoid having many chains
containing more than one entry

® those require sequential searching

Version Limit

e Currently the type of version numbers is int

® Can’t create more than 2231 - 1 versions
e 2.147.483,647 > 2 billion

® Need more than 2 billion versions?

e Could use 1long instead
o 2163 - | =9,223,372,036,854,775,807 > 9 quintillion

® Other map implementations don’t have a limit

® |s this a deal breaker?

m | t‘
)

=41 e |
ol |
2\ /
9 4 >

S a

c

3
§
Z I

VMap

Initial Implementation

® In Java because | felt most confident
in getting it right there
® adding support for generics greatly increased code complexity

® But most Java developers
don’t care about immutability

® need to port to functional languages

® |ots of unit tests

® Performance tests compare to
® Java HashMap and HashSet

® Clojure PersistentHashMap and PersistentHashSet

[]
Simple Example
VMap<String, Integer> map0 = new VHashMap<String, Integer>();

mapO is still empty.
VMap<String, Integer> mapl = mapO.put("foo", 1); map | only contains the key “foo”.

mapO is still empty.
map | still only contains the key “foo”.
map?2 contains the keys “foo” and “bar”’.

VMap<String, Integer> map2 = mapl.put("bar", 2);

mapO is still empty.

VMap<String, Integer> map3 = map2.delete("foo") ; ; 3 P
map| still only contains the key “foo”.

map? still contains the keys “foo” and “bar”.

VMap<String, Integer> map4 = map3.put("bar", 3); map3fonlyicontainsitheikeygbans
mapO is still empty.

map| still only contains the key “foo”.
map? still contains the keys “foo” and “bar”.
map3 still only contains the key “bar”.

map4 contains the key “bar”,

but with a different value than in map2.

VMap<String, Integer> map5 = map4.put("foo", 4);

mapO is still empty.

map | still only contains the key “foo”.
map? still contains the keys “foo” and “bar”.
map3 still only contains the key “bar”.

map4 still contains the key “bar”,

but with a different value than in map2.

map5 contains the keys “foo” and “bar”,

but “foo” has a different value than in map| and map2.

Ve -
VMap 18 @I

OsjecT COMPUTING, INC.

Multiple Values in a Version

// Using a set.
VSet<String> setl =

new VHashSet<String>("red", "orange", "yellow");
VSet<String> set2 = set.add("green", "blue", "purple");

set2 contains all six colors

// Using a map.
VMap<String, Integer> map =

there is also a constructor

new VHashMap<String, Integer> () ; Ririhelcart et tinee:
of Pair objects

map .put (
new Pair<String, Integer>("foo", 1),
new Pair<String, Integer>("bar", 2),

new Pair<String, Integer>("baz", 3));

o =

19 \-_% I

OgJjecT COMPUTING, INC.

VMap

VMap

Which Versioned Values!?

® When performing a lookup
in a particular VMap instance,
which versioned values should be considered?

® A givenVMap instance can use values
from its ancestor maps

lower version number, but not necessarily all lower versions
version 6 may derive from version 4 which derives from | and 0
values are in order from newest to oldest version

sequential search, but don’t need to search far in the common case

° tend to want newer values more than older ones
o tend to not have a large number of values for the same key
20

VMap

Recording Ancestors

® How does aVMap instance record its ancestors!?
® Java implementation using java.util.BitSet

® version numbers are used as indexes

® uses an array of longs that grows automatically as needed

® BitSets are large when many versions are created

® | million versions => BitSet with 15,625 longs

® ButVMap instances can share a BitSet

® just need to be careful to only check versions of indexes
that are <= instance version

21

ooooooooo

Searching Versioned Values

VersionValue<V> vv = firstvv; // of an entry
while (vv !'= null) {
if (vv.version == version.number) return vv;
if (vv.version < version.number &é&
version.ancestors.get (vv.version)) ({

return vv;
the BitSet

}

vv = vv.next;

}

return null;

€9 I
VMap 22 N

OgJecT COMPUTING, INC.

VMap

Thread Safe?

® |ots of synchronized methods

® Performance tests pay the cost
for all those locks

® Could use a code review

23

OOOOOOOOOOOOOOOOOOO

VMap

Performance Tests ...

® Tested using full text of four classic books

Title Words | Unique
e, | 20388 | 3153
Adventures of 70,040 | 8761
Tom Sawyer
Tévc-)ra(lieit(i)efs 135,820 | 11,671
War and Peace| 562,177 | 21,843

24

ooooooooo

VMap

Map Performance Tests

® Data

® |st key is “firstKey”; st value is first word in book

® 2nd key is Ist word in book; 2nd value is 2nd word in book

o E1 (e Yo Xe 11l For “War and Peace” this results in
30,762 values for the key “the”!
® Steps

® get list of key/value pairs (not included in timing)
® create empty map
® populate map from pairs

® retrieve the value for each key (lookup) and verify

® Other details

® perform a priming run for each map implementation

® capture time of second run for each map implementation

25

VMap

Set Performance Tests

® Data
® ordered collection of all words in book
° not a set, so includes duplicates
® Steps

® get ordered list of words (not included in timing)
® create an empty set
® add each of the words to the set one at a time

® verify that the set contains each of the words (lookup)

® Other details

® perform a priming run for each set implementation

® capture time of second run for each set implementation

26

VMap

Study This Map!

) 5 RUM

HTS-DF - RYF

27

VMap

Performance Results

numbers are in milliseconds;

Ist is time to load data; 2nd is time to lookup values; 3rd is total

Alice in Adventures of| A Tale of War and
Wonderland | Tom Sawyer Two Cities Peace
213 617 14 4 18 89 6 95
clojure.lang.PersistentHashMap 25 3 28 46 2 48 251 3 254 658 9 667
com.ociweb.collection.VHashMap 10 5 15 24 8 32 51 5 56 271 17 288
8 3 11 17 5 22 34 15 49 91 75 166
clojure.lang.PersistentHashSet 32 3 35 95 7 102 85 22 107 149 110 259
com.ociweb.collection.VHashSet 6 4 10 16 11 27 39 36 75 154 113 267
7
28 “\?/‘ I

OgJjecT COMPUTING, INC.

VMap

Conclusions

Can’t compete with java.util versions

but those are mutable

Much faster loading times than Clojure versions

but advantage becomes less when number of entries gets very large

Slower lookup times than Clojure versions

but that is a much smaller part of the total than load time

not good though since most apps will
perform more lookups than loads

Need to verify thread safety

Maybe more optimizations can be made

29

ooooooooo

VMap

What Do You Think?

Has a similar idea already been evaluated?
Is this idea worth pursuing further?
Do you have ideas for further optimizations!?

What programming language communities
would value a port of this?

On GitHub - https://github.com/mvolkmann/VMap

Send feedback to mark@ociweb.com

Thanks for listening!

30

llllllllllllllllll

