parser combinators

{:-name "nate young"
:from "revelybix"
:date (feb 3 2011)}



why use parser combinators

how Go use parser combinators

wribe your own



why use parser combinators

how Go use parser combinators

wribe your own

for Ghose sbill awake: cabegory theory!



formal grammars have large upfront Gax

LL,LR, LALR



formal grammars have large upfront Gax
LL, LR, LALR

project inGegration
yacc, ANTLR

parser generators aren't in-language



formal grammars have large upfront Gax
LL, LR, LALR
project inGegration
yacc, ANTLR
parser generators aren't in-language
Ghe anti-DSL
DSL == small, specific (hew) language

parsec == small part of (old) language



modular, TDD-friendly



modular, TDD-friendly

userfriendly default error messages



modular, TDD-friendly
userfriendly default error messages
closely resemble normal funcbtions

natural mix of parsing and processing



modular, TDD-friendly

userfriendly default error messages

closely resemble normal funcbtions
natural mix of parsing and processing

incredibly fine-grained

use of closures borders on pathological



) N Jf:la‘

Parsec JParsec J\SParsec

e |

ERLANG
Parsnip Parsec Erlang Pysec

a4 -

Ruby Parsec NParsec PCL




Consumed

Empby



Ok

Error



Consumed Ok

X

Empby Error




cok eok

cerr eerr



cok eok

cerr eerr



(defn always [X]
(fn [state cok cerr eok eerr]
(eok x state)))



(defn always [X]
(fn [state cok cerr eok eerr}
(eok x state)))



cok eok

cerr eerr



(defn never []
(fn [state cok cerr eok eerr]
(eerr (UnknownError. (:pos state)))))



(defn never []
(fn [state cok cerr eok eerr]
(eerr (UnknownError. (:pos state)))))



cok eok

cerr eerr



(defn token [consume? nextpos-f show-f]
(fn [{:keys [1input pos] :as state} cok cerr eok eerr]
(let [item (first input)]
(1f (consume? item)
(let [newpos (nextpos-f pos item (rest input))
newstate (InputState. (rest input) newpos)]
(cok item newstate))

(eerr (UnexpectedError. (str "Found " (show-f 1item))

pos))))))



(defn token [consume? nextpos-f show-f]
(fn [{:keys [1input pos] :as state} cok cerr eok eerr]
(let [item (first 1input)]
(1f (consume? item)
(let [newpos (nextpos-f pos item (rest input))
newstate (InputState. (rest input) newpos)]
(cok item newstate))

(eerr (UnexpectedError. (str "Found " (show-f 1item))

pos))))))



P >> Qq





















(defn next [p q]
(fn [state cok cerr eok eerr]
(Lletfn [(pcok [item state]
(g state cok cerr cok cerr))
(peok [1tem state]
(g state cok cerr eok eerr))]
(p state pcok cerr peok eerr))))



(defn next [p q]
(fn [state cok cerr eok eerr]
(letfn [(pcok [item state]
(g state cok cerr cok cerr))
(peok [1tem state]
(g state cok cerr eok eerr))]
(p state pcok cerr peok eerr))))



P <|>q


















(defn either []
(fn [state cok cerr eok eerr]
(letfn [(peerr [from-p]
(letfn [(qeerr [from-q]
(eerr (merge from o

from-q))) ]

(q state cok cerr eok qeerr)))]
(p state cok cerr eok peerr))))



(defn either []
(fn [state cok cerr eok eerr]
(letfn [(peerr [from-p]
(letfn [(geerr [from-q]
(eerr (merge from-p

from-q))) |

(g state cok cerr eok qgeerr)))]l
(p state cok cerr eok peerr))))
























