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formal grammars have large upfront Gax
LL, LR, LALR
project inGegration
yacc, ANTLR
parser generators aren't in-language
Ghe anti-DSL
DSL == small, specific (hew) language

parsec == small part of (old) language
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modular, TDD-friendly

userfriendly default error messages

closely resemble normal funcbtions
natural mix of parsing and processing

incredibly fine-grained

use of closures borders on pathological
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(defn next [p q]
(fn [state cok cerr eok eerr]
(Lletfn [(pcok [item state]
(g state cok cerr cok cerr))
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