
ECMAScript (ES) 5
Mark Volkmann

mark@ociweb.com

ES5

History
• ECMAScript 1 - 6/97

• ECMAScript 2 - 6/98 - only editorial changes

• ECMAScript 3 - 12/99

• regular expressions, string handling improvements

• ECMAScript 4 - never completed

• not backward compatible with ECMAScript 3

• large number of changes and new features

• very controversial

• eventually scaled back and renamed ECMAScript 3.1, then became ...

• ECMAScript 5 - 12/09 - 10 years after last released revision!

• a.k.a. ECMAScript, 5th Edition

• compatible with ECMAScript 3

• adds object properties, “strict mode” subset, JSON support, more reflection,
and a few more features

• spec is at http://www.ecmascript.org/ - see “Fifth Edition of ECMA-262”

• ECMAScript Harmony - code name of next edition; work in progress

2

ES5

Object Extensibility

• Refers to the ability to add properties,
including functions, to objects

• To prevent an object from being extended

• only works if “strict mode” is enabled

• To determine if an object is extensible

• Can’t re-enable extensions

obj.p1 = foo;

obj.p2 = function () { ... code ... };

Object.preventExtensions(obj);

if (Object.isExtensible(obj)) { ... }

3

Why not
obj.preventExtensions()?
The rationale is that it would merge
the meta and application layers.

ES5

Object Properties

• An object “property” has
• optional getter method, called when value is retrieved

• can use to compute or lookup value

• optional setter method, called when value is changed

• can use to validate value

• can use to set other related property values

• “property descriptor” that includes the value and three flags described next

• these four things are referred to as “property attributes”

4

ES5

Property Descriptor Flags
• writable

• if false, the value cannot be changed (a constant)

• only applies to properties that have a value attribute
and no get or set attribute

• configurable
• if false, the property cannot be deleted from its object

• if false, the descriptor flags cannot be changed

• except writable can be changed from true to false

• enumerable
• if false, a for loop will not see the property

when iterating through the properties of its object

• Default values?
• article by John Resig at says they all default to true

• spec says they all default to false in section 8.6.1, table 7

5

http://ejohn.org/blog/
ecmascript-5-objects-and-properties/

ES5

Defining a Property

• To define a property,
set its initial value or get/set methods (not both)
and set its attribute flags (if non-default value are desired)

• When get and set methods are trivial like above,
the following is equivalent

Object.defineProperty(obj, "temperature", {
 t: 98.2, // descriptor property that holds value
 configurable: false,
 get: function () { return t; },
 set: function (value) { t = value; }
});

Object.defineProperty(obj, "temperature", {
 value: 98.2,
 configurable: false
});

6

obj.temperature calls this

obj.temperature = calls this

t is not accessible outside
get and set methods

ES5

Defining Multiple Properties

• To define multiple properties in one call
var person = {};
Object.defineProperties(person, {
 "name": {
 value: "Mark Volkmann",
 configurable: false, // can't delete
 writable: false }, // can't change
 "age": {
 value: 49,
 configurable: false // can't delete
 set: function (value) {
 if (value < 0 || value > 110) {
 throw new RangeError("age must be between 0 and 110");
 }
 age = value;
 }
 }});

7

ES5

Getting Property Names

• To get names of all enumerable properties
of an object

• To get array of names of all properties of an object,
including those that are not enumerable

var propNames = Object.keys(person); // returns ["name", "age"]

// The following is preferred over the old-style
// for (var prop in obj) {
// if (obj.hasOwnProperty(prop)) {
// ...
// }
// }
Object.keys(person).forEach(function (key) {
 ...
});

var propNames = Object.getOwnPropertyNames(person);

8

ES5

Retrieving a Property Descriptor

• To retrieve the property descriptor
of an object property
var obj = { p1: "foo", p2: 19 };
var pd = Object.getOwnPropertyDescriptor(obj, "p1");
// pd = {
// value: "foo",
// writable: true,
// enumerable: true,
// configurable: true
//}

9

It seems Resig is correct,
at least in the Node.js

implementation.

ES5

Sealing

• Prevents property addition, property deletion
and descriptor changes for an object

• To seal an object

• sets configurable property attribute to false
for each property in the object
and calls Object.preventExtension(obj);

• can still access and modify the existing properties

• To determine if an object is sealed

• Cannot unseal an object

Object.seal(obj);

if (Object.isSealed(obj)) { ... }

10

ES5

Freezing

• Same as sealing, but properties cannot be modified

• To freeze an object

• To determine if an object is frozen

• Cannot unfreeze an object

Object.freeze(obj);

if (Object.isFrozen(obj)) { ... }

11

ES5

Object Creation

• To create an object with
• a specific prototype object

• set of properties specified in the same way
as when defining multiple properties

• To get prototype of an object

var obj = Object.create(prototypeObject, properties);

var prototypeObject = Object.getPrototypeOf(obj);

12

ES5

Strict Mode ...

• Helps avoid common coding problems

• Enabled with the directive "use strict";
• opt-in model

• include the quotes! - single or double

• planning to drop quotes in a future version

• just a string, so no new syntax required

• to affect entire source file, include as first executable statement

• doesn’t affect subsequently parsed files

• to affect a single function, include as first line in function

• to affect a set of functions, wrap functions in an anonymous function
that includes the directive and executes itself

• (); at the end

• to affect a string of code passed to eval, include as first statement in string

13

ES5

... Strict Mode ...

• Has no effect on JavaScript engines
that don’t support it
• but code that is tested that way may not run in an engine that does

• See “Annex C” in the spec
for a summary of strict mode

14

ES5

... Strict Mode ...

• Variables must be declared before first use
• either setting or getting

• Object literals cannot contain
duplicate property names

• Octal literals are not allowed
• numbers with a leading zero

• with statement cannot be used

• delete
• can only be used on properties, not variables, functions or parameters

• cannot be called on properties whose “configurable” attribute is false

15

ES5

... Strict Mode ...

• Functions cannot have parameters
with duplicate names

• When code executed by eval
declares new variables (with var)
or defines new functions,
they exist in a new environment,
not in the environment of the caller

• Inside functions (not methods)
• this is null rather than the global object

• can use to test whether environment supports strict mode

var supportsStrict = (function () {
 'use strict';
 return !this;
})();

16

ES5

... Strict Mode

• arguments special variable is immutable

• “arguments” and “eval” are reserved
• cannot be used for the name of a

variable, property, function, parameter or catch identifier

• “arguments” and “caller” are reserved
• cannot create or modify properties with these names on function objects

• caller property of Function objects and
callee property of Arguments objects
cannot be accessed

17

ES5

New String Method

• To trim leading and trailing whitespace
var s2 = s.trim();

or
s = s.trim();

18

ES5

New Date Methods

• Create ISO string from Date
• example - '2010-11-04T00:17:15.177Z'

• Create Date from ISO string

• Create Date representing current time

var iso = date.toISOString();

var millis = Date.parse(isoString);
var date = new Date(isoString);

var millis = Date.now();

19

milliseconds are since since
midnight 01 January, 1970 UTC

ES5

New Array Methods ...
•isArray(obj)

•indexOf(element[, fromIndex])

•lastIndexOf(element[, fromIndex])

Existing
Array
methods
concat
join
pop
push
reverse
shift
slice
sort
splice
toString
toLocaleString
unshift

if (Array.isArray(obj)) { ... }

var index = arr.indexOf('yellow');

var index = arr.lastIndexOf('yellow');

20

ES5

... New Array Methods ...
•forEach(fn[, thisInFn])

• fn is passed the current element, its index, and the array,
but like all JS functions, it only needs to accept those it uses

• if thisInFn is specified, it is the value of this in fn

• otherwise this is null

21

arr.forEach(function (element) { print(element); });

ES5

... New Array Methods ...
•map(fn[, thisInFn])

• returns a new Array created from the results of applying fn to each element

• fn takes same arguments as in forEach

•filter
• returns a new Array containing all the elements for which fn returns true

• fn takes same arguments as in forEach

• in addition, fn must return a value that can be coerced to a boolean

var newArr = arr.map(function (element) { return element * 2; });

var isEven = function (x) { return x % 2 === 0; }
var evens = arr.filter(function (element) { return isEven(element); });

To use new Arrray methods in ECMAScript 3 see
http://erik.eae.net/playground/arrayextras/

22

ES5

... New Array Methods ...
•reduce(fn[, initialValue])

• fn is passed the current result, the current element, its index, and the array

• for the first call to fn

• if initialValue is specfied, it is the current result

• if initialValue is not specified,
the first element is the current result and the second element is the current element

• for subsequent calls to fn

• the current result is the value returned by the previous call to fn

•reduceRight(fn[, initialValue])
• same as reduce, but elements are processed

from right to left instead of left to right

var sum = arr.reduce(function (x, y) { return x + y; });

23

ES5

... New Array Methods
•every(fn[, thisInFn])

• fn takes same arguments as in forEach

• in addition, fn must return a value that can be coerced to a boolean

• stops and returns false the first time fn returns false;
otherwise returns true

•some(fn[, thisInFn])

• same as every, but
stops and returns true the first time fn returns true;
otherwise returns false

if (arr.every(isEven)) { ... }

if (arr.some(isEven)) { ... }

24

isEven is defined on slide 21

can use these to avoid writing loops
that break out before evaluating

all the elements in an array

var names =

 'Mark Tami Amanda Jeremy'.split(' '),

 picked;

names.some(function (name) {

 console.log('evaluating ' + name);

 var pick = name.length > 4;

 if (pick) picked = name;

 return pick;

});

console.log(picked); // Amanda

ES5

New Function Method
•bind(thisInFn[, initialArgs])

• returns a new function that invokes a given function
with the value of this bound to a given object and initial arguments bound

• thisInFn is the value of this in fn

• can perform partial application

• means creating a new function that invokes a given function
with predefined values for some or all of the parameters starting at the beginning

• useful for callbacks that take arguments

• without bind, an anonymous function must be used

var product = function (x, y) { return x * y; }
var arr1 = [1, 2, 3];
var arr2 = arr1.map(product.bind(null, 5));
// arr2 = [5, 10, 15]

var times5 = product.bind(null, 5);
arr2 = arr1.map(times5);
// same result

// Suppose f1 is a function
// that takes a callback,
// f2 is the callback,
// and it takes two arguments.
// The following are equivalent.
f1(function () { f2(a, b); });
f1(f2.bind(null, a, b));

25

ES5

New JSON Object ...

• Improves security
• old way of creating JavaScript objects from JSON text

simply executes the text as code and
creates objects by treating JSON as an object literal

• new way verifies that text being parsed is valid JSON
and doesn’t execute arbitrary JavaScript code

• Creating an object from a JSON string

• optional reviver function

• has key and value parameters

• return undefined to delete the property

• return some other value to transform it (ex. transform date strings to Date objects)

var obj = JSON.parse(json[, reviverFunction]);

26

ES5

... New JSON Object

• Creating a JSON string from an object

• objects with a toJSON method are stringified using that

• optional replacer argument can be

• a function that is passed each value to be stringified

• return value is stringified instead of the original value

• an array of names of properties to be included in result

• optional space argument can be

• a string or number of spaces to be used in indented output for human readability

• maximum indentation increment is ten spaces or characters

• Can use in ES3 by downloading json2.js
• from Douglas Crockford

• see link at bottom of http://www.json.org/js.html

JSON doesn’t support cycles in
object relationships

var json = JSON.stringify(object[, replacer[, space]]);

27

ES5

JSON Example

function Address(street, city, state, zip) {
 this.street = street;
 this.city = city;
 this.state = state;
 this.zip = zip;
}

function Person(name, address) {
 this.name = name;
 this.address = address;
}

var a = new Address(
 '644 Glen Summit', 'St. Charles', 'MO', 63304);
var p = new Person('Mark', a);
var json = JSON.stringify(p);
console.log(json);
var newP = JSON.parse(json);
console.log(newP.name + ' ' + newP.address.zip);
// Mark 63304

Output on one line:
{
 "name":"Mark",
 "address":{
 "street":"644 Glen Summit",
 "city":"St. Charles",
 "state":"MO",
 "zip":63304
 }
}

28

ES5

Other Changes

• Constructors
• cannot be called without new

• ex. Foo() instead of new Foo()

• when not in strict mode, this is undefined and
setting properties in the constructor may throw an error

• Objects
• trailing commas in object literals are allowed

• ex. { foo: "hello", bar: "world", }

• the global object cannot be accessed ???

Is any function that begins with an
uppercase letter considered to be a
constructor function???

29

ES5

Resources

• ECMAScript 5 Objects and Properties
• John Resig, http://ejohn.org/blog/ecmascript-5-objects-and-properties/

• ECMAScript 5 Strict Mode, JSON, and More
• John Resig, http://ejohn.org/blog/ecmascript-5-strict-mode-json-and-more/

• ECMAScript 5: The Definitive Slides
• David Flanagan, http://davidflanagan.com/Talks/es5/slides.html

• ECMAScript 5 Compatibility Table
• http://kangax.github.com/es5-compat-table/

• thanks to Bill Edney for telling me about this!

30

