ECMAScript (ES) 5

Mark Volkmann
mark@ociweb.com

OBJECT COMPUTING, INC.

History

e ECMAScript | - 6/97
e ECMAScript 2 - 6/98 - only editorial changes
e ECMAScript 3 - 12/99

® regular expressions, string handling improvements

e ECMAScript 4 - never completed
® not backward compatible with ECMAScript 3
® large number of changes and new features
® very controversial

® eventually scaled back and renamed ECMAScript 3.1, then became ...

e ECMAScript 5 - 12/09 - 10 years after last released revision!
® ak.a. ECMAScript, 5th Edition
® compatible with ECMAScript 3

® adds object properties, “strict mode” subset, JSON support, more reflection,
and a few more features

® spec is at http://www.ecmascript.org/ - see “Fifth Edition of ECMA-262"

e ECMAScript Harmony - code name of next edition; work in progress
7.
\\\ L I 2

OBJECT COMPUTING, INC.

Object Extensibility

® Refers to the ability to add properties,
including functions, to objects

obj.pl foo;

obj.p2 = function () { ... code ... };

® To prevent an object from being extended

E)bj ect.preventExtensions (obj) ;) Why not
. o obj.preventExtensions()!
L4 only works if “strict mode” is enabled The rationale is that it would merge

the meta and application layers.

® To determine if an object is extensible

Gf (Object.isExtensible(obj)) { ... }]

® Can’t re-enable extensions

ES5

Object Properties

® An object “property” has

® optional getter method, called when value is retrieved
® can use to compute or lookup value
® optional setter method, called when value is changed
® can use to validate value
® can use to set other related property values
® “property descriptor” that includes the value and three flags described next

® these four things are referred to as “property attributes”

ES5

Property Descriptor Flags

e writable

® if false, the value cannot be changed (a constant)

® only applies to properties that have a value attribute
and no get or set attribute

e configurable

o if false, the property cannot be deleted from its object

o if false, the descriptor flags cannot be changed

® except writable can be changed from true to false

e enumerable

e if false,a for loop will not see the property
when iterating through the properties of its object

® Default values?

. . http://ejohn.org/blog/
® article by John Resig at says they all default to true [et et b e i)

® spec says they all default to false in section 8.6.1, table 7
P—
Cd

OBJECT COMPUTING, INC.

5 ES5

Defining a Property

® To define a property,
set its initial value or get/set methods (not both)
and set its attribute flags (if non-default value are desired)

t is not accessible outside
get and set methods

obj. temperature calls this

Object.defineProperty (obj, "temperature", {
t: 98.2, // descriptor property that holds value
configurable: false,
get: function () { return t; },
set: function (value) { t = value; }

})

obj. temperature = calls this

® When get and set methods are trivial like above,
the following is equivalent

Object.defineProperty (obj, "temperature", {
value: 98.2,
configurable: false

})

—
@/‘ |

OBJECT COMPUTING, INC.

6 ES5

Defining Multiple Properties

® To define multiple properties in one call

4 N
var person = {};

Object.defineProperties (person, {
"name": {
value: "Mark Volkmann",
configurable: false, // can't delete
writable: false }, // can't change
"age": {
value: 49,
configurable: false // can't delete
set: function (value) {
if (value < 0 || wvalue > 110) {
throw new RangeError ("age must be between 0 and 110");
}
age = value;
}

P
(. J

Getting Property Names

® To get names of all enumerable properties

of an object

4 N
var propNames = Object.keys (person); // returns ["name", "age"]

// The following is preferred over the old-style
// for (var prop in obj) {

// if (obj.hasOwnProperty (prop)) {

//

/7 0}

/7 }

Object.keys (person) . forEach (function (key) ({

b
\ J

® To get array of names of all properties of an object,
including those that are not enumerable

(%ar propNames = Object.getOwnPropertyNames (person) ; :j

Retrieving a Property Descriptor

® To retrieve the property descriptor
of an object property

4)
var obj = { pl: "foo", p2: 19 };
var pd = Object.getOwnPropertyDescriptor (obj, "pl"):;
// pd = {
// value: "foo",
// writable: true, It seems Resig is correct,
// enumerable: true, at least in the Node.js
// configurable: true implementation.
//}
g _/
cd
0)
\ I 9 ES5

Sealing

® Prevents property addition, property deletion
and descriptor changes for an object

® To seal an object

E)bject. seal (obj) :]

® sets configurable property attribute to false
for each property in the object
and calls Object.preventExtension (obj) ;

® can still access and modify the existing properties

® To determine if an object is sealed

E.f (Object.isSealed(obj)) { ... }]

® Cannot unseal an object

\ 10 ES5

BIECT COMPUTING, INC.

Freezing

® Same as sealing, but properties cannot be modified
® To freeze an object

E)bject. freeze (obj) ;]

® To determine if an object is frozen

E’Lf (Object.isFrozen(obj)) { ... }j

® Cannot unfreeze an object

ES5

BIECT COMPUTING, INC.

Object Creation

® To create an object with

® a specific prototype object

® set of properties specified in the same way
as when defining multiple properties

Erar obj = Object.create (prototypeObject, properties) ;]

® To get prototype of an object

Erar prototypeObject = Object.getPrototypeOf (obj) ;]

ES5

Strict Mode ...

® Helps avoid common coding problems

e Enabled with the directive "use strict";

® opt-in model

® include the quotes! - single or double
® planning to drop quotes in a future version

® just a string, so no new syntax required

® to affect entire source file, include as first executable statement
® doesn't affect subsequently parsed files

® to affect a single function, include as first line in function

® to affect a set of functions, wrap functions in an anonymous function
that includes the directive and executes itself

® (); atthe end

e to affect a string of code passed to eval, include as first statement in string

nnnnn

ES5

... Strict Mode ...

® Has no effect on JavaScript engines
that don’t support it

® but code that is tested that way may not run in an engine that does

® See “Annex C” in the spec
for a summary of strict mode

nnnnnn

ES5

... Strict Mode ...

® Variables must be declared before first use

® cither setting or getting

® Object literals cannot contain
duplicate property names

® Octal literals are not allowed

® numbers with a leading zero
e with statement cannot be used
e delete

® can only be used on properties, not variables, functions or parameters

® cannot be called on properties whose “configurable” attribute is false

ES5

... Strict Mode ...

® Functions cannot have parameters
with duplicate names

® When code executed by eval
declares new variables (with var)
or defines new functions,
they exist in a new environment,
not in the environment of the caller

® |nside functions (not methods)
® this is null rather than the global object

® can use to test whether environment supports strict mode

var supportsStrict = (function () {
'use strict';
return !'this;

b O;

ES5

OBJECT COMPUTING, INC.

... Strict Mode

® arguments special variable is immutable

® “arguments” and “eval” are reserved

® cannot be used for the name of a
variable, property, function, parameter or catch identifier

® “arguments” and“caller” are reserved
® cannot create or modify properties with these names on function objects
® caller property of Function objects and
callee property of Arguments objects
cannot be accessed

ES5

OBJECT COMPUTING, INC.

New String Method

® To trim leading and trailing whitespace

var s2 = s.trim();
or

s = s.trim();

ES5

New Date Methods

® Create ISO string from Date
e example- '2010-11-04T00:17:15.1772"

Erar iso = date.toISOString() ;]

® Create Date from ISO string

var millis = Date.parse(isoString); milliseconds are since since
var date = new Date(isoString); midnight Ol January, 1970 UTC

® Create Date representing current time

Erar millis = Date.now() ;]

19 ES5

New Array Methods ...

® isArray (obj) ::_:sat;n

methods

E.f (Array.isArray(obj)) { ... }] concat

join

Pop

push

reverse

shift

slice

® indexOf (element[, fromIndex]) B

splice

toString
Erar index = arr.indexOf ('yellow') ,] toLocaleString

unshift

® lastIndexOf (element[, fromIndex])

Erar index = arr.lastIndexOf ('yellow') ;j

20 ES5

... New Array Methods ...

® forEach(fn[, thisInFn])

[arr.forEach(function (element) { print(element) ; });]

e fn is passed the current element, its index, and the array,
but like all JS functions, it only needs to accept those it uses

e if thisInFn is specified, it is the value of this in £n

® otherwise this is null

(@ i
0\,// 21 ES5
... New Array Methods ...
®map (fn[, thisInFn])
® returns a new Array created from the results of applying £n to each element
® f£n takes same arguments as in forEach
Erar newArr = arr.map (function (element) { return element * 2; }) ;]
®filter
® returns a new Array containing all the elements for which £n returns true
e fn takes same arguments as in forEach
® in addition, £n must return a value that can be coerced to a boolean
var isEven = function (x) { return x % 2 === 0; }
var evens = arr.filter (function (element) { return isEven(element); });
To use new Arrray methods in ECMAScript 3 see
http://erik.eae.net/playground/arrayextras/
&
\‘/ l

o 22 ES5

... New Array Methods ...

® reduce (fn[, initialValue])

e fn is passed the current result, the current element, its index, and the array
e for the first call to £n

e ifinitialValue is specfied, it is the current result

e ifinitialValue is not specified,
the first element is the current result and the second element is the current element

e for subsequent calls to £n

® the current result is the value returned by the previous call to £n

Erar sum = arr.reduce (function (x, y) { return x + y; }) ;j

® reduceRight (fn[, initialValue])

® same as reduce, but elements are processed
from right to left instead of left to right

—
@/‘ |

OBJECT COMPUTING, INC.

23 ES5

... New Array Methods

® cvery (fn[, thisInFn])

E.f (arr.every(isEven)) { ... }j isEven is defined on slide 21

e fn takes same arguments as in forEach

® in addition, £n must return a value that can be coerced to a boolean

e stops and returns false the first time £n returns false;
otherwise returns true

var names = \
'Mark Tami Amanda J t.split(' '),
can use these to avoid writing loops ic:e d.am nda Jeremy'.splic(’ 1)
that break out before evaluating P ! X
all the elements in an array names.sone (function (name) {
console.log('evaluating ' + name);
var pick = name.length > 4;
® some (fn[, thisInFn]) if (pick) picked = name;
return pick;
if (arr.some(isEven)) { ... } hi
console.log(picked); // Amanda)
® same as every, but
stops and returns true the first time £n returns true;
otherwise returns false
@1
‘)
\ I 24 ES5

OBJECT COMPUTING, INC.

New Function Method

®bind (thisInFn[, initialArgs])
® returns a new function that invokes a given function
with the value of this bound to a given object and initial arguments bound
e thisInFn is the value of this in £fn
® can perform partial application

® means creating a new function that invokes a given function
with predefined values for some or all of the parameters starting at the beginning

-
var product = function (x, y) { return x * y; }

var arrl = [1, 2, 3];
var arr2 = arrl.map (product.bind(null, 5));
// arr2 = [5, 10, 15]

()
// Suppose fl is a function
var times5 = product.bind(null, 5); // that takes a callback,
arr2 = arrl.map (times5) ; // £2 is the callback,
// same result // and it takes two arguments.
- // The following are equivalent.
£f1 (function f2(a, b); ;
® useful for callbacks that take arguments ¢) O =2t Yo n
£1(£2.bind (null, a, b));
- ® without bind, an anonymous function must be used _ J
@ &
(‘
0\\// I 25 ES5
N SON Ob;j
ew | ject ...
® Improves security
® old way of creating JavaScript objects from JSON text
simply executes the text as code and
creates objects by treating JSON as an object literal
® new way verifies that text being parsed is valid JSON
and doesn’t execute arbitrary JavaScript code
® Creating an object from a JSON string
Erar obj = JSON.parse(json|[, reviverFunction]);j
® optional reviver function
® has key and value parameters
e return undefined to delete the property
® return some other value to transform it (ex. transform date strings to Date objects)
7. @
\ ‘W | 2 ES5

OBJECT COMPUTING, INC.

«

... New JSON Obiject

® Creating a JSON string from an object

Erar json = JSON.stringify (object[, replacer[, space]]) ;]

® objects with a toJSON method are stringified using that _
JSON doesn’t support cycles in
e optional replacer argument can be e ARl

® afunction that is passed each value to be stringified

® return value is stringified instead of the original value

® an array of names of properties to be included in result

® optional space argument can be
® astring or number of spaces to be used in indented output for human readability

® maximum indentation increment is ten spaces or characters

® Can use in ES3 by downloading json2. js

® from Douglas Crockford

® see link at bottom of http://www.json.org/js.html

27 ES5

OBJECT COMPUTING, INC.

@l

JSON Example

s
function Address(street, city, state, zip) {

this.street = street;
this.city = city;
this.state = state;
this.zip = zip;

}

function Person(name, address) {
this.name = name;
this.address = address;

} Output on one line:
var a = new Address(! "name" : "Mark",

'644 Glen Summit', 'St. Charles', 'MO', 63304); "address": {
var p = new Person('Mark', a); "street":"644 Glen Summit",
var json = JSON.stringify (p); "city":"St. Charles",
console.log(json) ; "state":"MO",
var newP = JSON.parse(json); "zip":63304
console.log(newP.name + ' ' + newP.address.zip);
// Mark 63304
- v

28 ES5

OBJECT COMPUTING, INC.

Other Changes

® ConStr‘U ctors Is any function that begins with an

uppercase letter considered to be a
® cannot be called without new constructor function

® ex. Foo() instead of new Foo ()

® when not in strict mode, this is undefined and
setting properties in the constructor may throw an error

® Objects

® trailing commas in object literals are allowed

® ex. { foo: "hello", bar: "world", }

® the global object cannot be accessed ???

- 29 ES5

Resources

® ECMAScript 5 Objects and Properties

® John Resig, http://ejohn.org/blog/ecmascript-5-objects-and-properties/

® ECMAScript 5 Strict Mode, JSON, and More

® John Resig, http://ejohn.org/blog/ecmascript-5-strict-mode-json-and-more/

® ECMAScript 5:The Definitive Slides
® David Flanagan, http://davidflanagan.com/Talks/es5/slides.html

® ECMAScript 5 Compatibility Table

® http://kangax.github.com/es5-compat-table/

® thanks to Bill Edney for telling me about this!

\m/ 30 ES5

