Logic Programming
in Clojure










8 “connected things” P

s



Dependency Graph P

s



(def rae
(ref {:name “rae”
last-update (Date.)

.deps [fa]}))

(def doe
(ref {:name “doe”
last-update (Date.)
.deps [rae fa sewl]}))




What are the

leaves?
What is the root?

How long are the paths from
the root to each leaf?

Dependency Graph
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Logic Programming is about
searching graphs




Logic Programming is about
searching graphs

* Social Media

*Web search

* Turn-by-turn navigation

* Recommendation engines
* Dependency relationships
* Variable type analysis

* Natural language parsing
* Protein folding

* Business rules engines




Mini-Kanren (in Clojure)
Subset of Kanren

Described in “The Reasoned Schemer”




Mini-Kanren (in Clojure)

run:
Logic functions cannot be executed
like 'normal’ Clojure functions.

'run’ queries a logic function for
results.

May return none, one or many
results.




Mini-Kanren (in Clojure)

(run g
; some logic functions

)

'q' Is a logic variable




Mini-Kanren (in Clojure)

Binding:
Logic variables are not like normal,
mutable variables.

Logic variables are 'bound'’ to values
or other logic variables with the
logic function '&'.




Mini-Kanren (in Clojure)

(run g
(& 7 q))

(run g
(&q 7))

Both return (7) as a result.




Mini-Kanren (in Clojure)

(run g
(&9 7))

(run g
(&9 q)

(& q 7))

Both return the empty list () as the
result.




Mini-Kanren (in Clojure)

Alternatives:
When a variable needs to be bound
to more than one value, use 'cond-¢e'

(run g
(cond-e
[(& q 4)]
[(& g "not’)]))

Returns the list (4 "not”) as the result.




Mini-Kanren (in Clojure)

New logic variables:

(run g
(exist [a b C]
(& qb)
(&a9)
(& b “string”)))

Returns a result of (“string”)




Zebra

9. Milk is drunk in the middle house.

(& [ | ‘milk ] ] h)




Zebra

10. The Norwegian lives in the first
house on the left.

(& h [[:norwegian 1|1




Zebra

15. The Norwegian lives next to the
blue house.

(next-to [ ‘blue]
:norwegian |

)




Zebra

2.The Englishman lives in the red
house.

(member-o [:englishman -red] h)
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Dependency Graph

(def rae
(ref {:name “rae”
last-update (Date.)

.deps [fa]}))

(defn dependency [a b]
(cond-e
[(& a rae) (& b fa)]))




Dependency Graph

(defn dependency [a b]
(cond-e

(& a rae) (& b fa)]
(& a doe) (& b fa)]
(& a doe) (& b rae)]
(& a doe) (& b sew)]
(& ame) (& b sew)]
(& ame) (& b la)]
(& ati) (& bla)
(& a song) (& b doe)]
(& a song) (& b me)]
(& a song) (& b ti)]))




(def rae
(ref {:name “rae”
last-update (Date.)}))

(def doe
(ref {:name “doe”
last-update (Date.)}))




Dependency Graph

(defn dependency [a b]
(cond-e

(& a rae) (& b fa)]
(& a doe) (& b fa)]
(& a doe) (& b rae)]
(& a doe) (& b sew)]
(& ame) (& b sew)]
(& ame) (& b la)]
(& ati) (& bla)
(& a song) (& b doe)]
(& a song) (& b me)]
(& a song) (& b ti)]))




Dependency Graph

(run g
(dependency doe q))




Dependency Graph

(run g
(dependency doe q))

Result: (fa rae sew)




Dependency Graph

(defn dependency [a b]
(cond-e

(& a rae) (& b fa)]
(& a doe) (& b fa)]
(& a doe) (& b rae)]
(& a doe) (& b sew)]
(& ame) (& b sew)]
(& ame) (& b la)]
(& ati) (& bla)
(& a song) (& b doe)]
(& a song) (& b me)]
(& a song) (& b ti)]))




Dependency Graph

(run g
(dependency g doe))




Dependency Graph

(run g
(dependency g doe))

Result: (song)




Dependency Graph

(defn dependency [a b]
(cond-e

(& a rae) (& b fa)]
(& a doe) (& b fa)]
(& a doe) (& b rae)]
(& a doe) (& b sew)]
(& ame) (& b sew)]
(& ame) (& b la)]
(& ati) (& bla)
(& a song) (& b doe)]
(& a song) (& b me)]
(& a song) (& b ti)]))




Dependency Graph

(run g
(dependency q ))




Dependency Graph

(run g
(dependency q ))

Result: (rae doe doe doe me me i
song song song)




Dependency Graph

(defn dependency [a b]
(cond-e

(& a rae) (& b fa)]
(& a doe) (& b fa)]
(& a doe) (& b rae)]
(& a doe) (& b sew)]
(& ame) (& b sew)]
(& ame) (& b la)]
(& ati) (& bla)
(& a song) (& b doe)]
(& a song) (& b me)]
(& a song) (& b ti)]))




Dependency Graph

(set
(run g
(dependency q )))

Result: #{rae doe me ti song}




Dependency Graph P

s



Dependency Graph

(defn make [a q]
(exist [ dep ]
(cond-e
[(dependency a dep)
(make dep q)]

[(dependency a dep)
(newer-than dep a)

(& aq)l)))




Dependency Graph

(def nodes
(run g
WELCE i le o))

(map update nodes)
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Dependency Graph

(defn make [a q]
(exist [ dep ]
(cond-e
[(dependency a dep)
(make dep q)]

[(dependency a dep)
(newer-than dep a)

(& aq)l)))




Dependency Graph P

s



Dependency Graph P
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Dependency Graph

(defn make [a q]
(exist [ dep ]
(cond-e
[(dependency a dep)
(make dep q)]

[(dependency a dep)
(newer-than dep a)

(& aq)l)))




Logic Programming

Hides the complexity of graph searches.




Logic Programming

Hides the complexity of graph searches.

Leaving you to focus on the problem you're
trying to solve.
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