Logic Programming
in Clojure

8 “connected things” P

s

Dependency Graph P

s

(def rae
(ref {:name “rae”
last-update (Date.)

.deps [fa]}))

(def doe
(ref {:name “doe”
last-update (Date.)
.deps [rae fa sewl]}))

What are the

leaves?
What is the root?

How long are the paths from
the root to each leaf?

Dependency Graph

Dependency Graph P

s

Logic Programming is about
searching graphs

Logic Programming is about
searching graphs

* Social Media

*Web search

* Turn-by-turn navigation

* Recommendation engines
* Dependency relationships
* Variable type analysis

* Natural language parsing
* Protein folding

* Business rules engines

Mini-Kanren (in Clojure)
Subset of Kanren

Described in “The Reasoned Schemer”

Mini-Kanren (in Clojure)

run:
Logic functions cannot be executed
like 'normal’ Clojure functions.

'run’ queries a logic function for
results.

May return none, one or many
results.

Mini-Kanren (in Clojure)

(run g
; some logic functions

)

'q' Is a logic variable

Mini-Kanren (in Clojure)

Binding:
Logic variables are not like normal,
mutable variables.

Logic variables are 'bound'’ to values
or other logic variables with the
logic function '&'.

Mini-Kanren (in Clojure)

(run g
(& 7 q))

(run g
(&q 7))

Both return (7) as a result.

Mini-Kanren (in Clojure)

(run g
(&9 7))

(run g
(&9 q)

(& q 7))

Both return the empty list () as the
result.

Mini-Kanren (in Clojure)

Alternatives:
When a variable needs to be bound
to more than one value, use 'cond-¢e'

(run g
(cond-e
[(& q 4)]
[(& g "not’)]))

Returns the list (4 "not”) as the result.

Mini-Kanren (in Clojure)

New logic variables:

(run g
(exist [a b C]
(& qb)
(&a9)
(& b “string”)))

Returns a result of (“string”)

Zebra

9. Milk is drunk in the middle house.

(& [| ‘milk]] h)

Zebra

10. The Norwegian lives in the first
house on the left.

(& h [[:norwegian 1|1

Zebra

15. The Norwegian lives next to the
blue house.

(next-to [‘blue]
:norwegian |

)

Zebra

2.The Englishman lives in the red
house.

(member-o [:englishman -red] h)

Dependency Graph P

s

Dependency Graph

(def rae
(ref {:name “rae”
last-update (Date.)

.deps [fa]}))

(defn dependency [a b]
(cond-e
[(& a rae) (& b fa)]))

Dependency Graph

(defn dependency [a b]
(cond-e

(& a rae) (& b fa)]
(& a doe) (& b fa)]
(& a doe) (& b rae)]
(& a doe) (& b sew)]
(& ame) (& b sew)]
(& ame) (& b la)]
(& ati) (& bla)
(& a song) (& b doe)]
(& a song) (& b me)]
(& a song) (& b ti)]))

(def rae
(ref {:name “rae”
last-update (Date.)}))

(def doe
(ref {:name “doe”
last-update (Date.)}))

Dependency Graph

(defn dependency [a b]
(cond-e

(& a rae) (& b fa)]
(& a doe) (& b fa)]
(& a doe) (& b rae)]
(& a doe) (& b sew)]
(& ame) (& b sew)]
(& ame) (& b la)]
(& ati) (& bla)
(& a song) (& b doe)]
(& a song) (& b me)]
(& a song) (& b ti)]))

Dependency Graph

(run g
(dependency doe q))

Dependency Graph

(run g
(dependency doe q))

Result: (fa rae sew)

Dependency Graph

(defn dependency [a b]
(cond-e

(& a rae) (& b fa)]
(& a doe) (& b fa)]
(& a doe) (& b rae)]
(& a doe) (& b sew)]
(& ame) (& b sew)]
(& ame) (& b la)]
(& ati) (& bla)
(& a song) (& b doe)]
(& a song) (& b me)]
(& a song) (& b ti)]))

Dependency Graph

(run g
(dependency g doe))

Dependency Graph

(run g
(dependency g doe))

Result: (song)

Dependency Graph

(defn dependency [a b]
(cond-e

(& a rae) (& b fa)]
(& a doe) (& b fa)]
(& a doe) (& b rae)]
(& a doe) (& b sew)]
(& ame) (& b sew)]
(& ame) (& b la)]
(& ati) (& bla)
(& a song) (& b doe)]
(& a song) (& b me)]
(& a song) (& b ti)]))

Dependency Graph

(run g
(dependency q))

Dependency Graph

(run g
(dependency q))

Result: (rae doe doe doe me me i
song song song)

Dependency Graph

(defn dependency [a b]
(cond-e

(& a rae) (& b fa)]
(& a doe) (& b fa)]
(& a doe) (& b rae)]
(& a doe) (& b sew)]
(& ame) (& b sew)]
(& ame) (& b la)]
(& ati) (& bla)
(& a song) (& b doe)]
(& a song) (& b me)]
(& a song) (& b ti)]))

Dependency Graph

(set
(run g
(dependency q)))

Result: #{rae doe me ti song}

Dependency Graph P

s

Dependency Graph

(defn make [a q]
(exist [dep]
(cond-e
[(dependency a dep)
(make dep q)]

[(dependency a dep)
(newer-than dep a)

(& aq)l)))

Dependency Graph

(def nodes
(run g
WELCE i le o))

(map update nodes)

Dependency Graph P

s

Dependency Graph

(defn make [a q]
(exist [dep]
(cond-e
[(dependency a dep)
(make dep q)]

[(dependency a dep)
(newer-than dep a)

(& aq)l)))

Dependency Graph P

s

Dependency Graph P

PN s

Dependency Graph

(defn make [a q]
(exist [dep]
(cond-e
[(dependency a dep)
(make dep q)]

[(dependency a dep)
(newer-than dep a)

(& aq)l)))

Logic Programming

Hides the complexity of graph searches.

Logic Programming

Hides the complexity of graph searches.

Leaving you to focus on the problem you're
trying to solve.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

