
MAPREDUCE



FUNCTIONAL PROGRAMMING

Map

 Apply function to transform elements of a list 

Return results as a list

 Reduce

 Apply function to all elements of a list

 Collect results and return as a single value



DEFINITION

MapReduce: A software framework to support 

processing of massive data sets across 

distributed computers



SAMPLE USE CASE

 Back end credit card processor

 Nightly processing of millions of transactions

 Processing requires grouping, sorting, and 

merchant wide analysis

 Can’t just divide the over all list into equal parts as 

further analysis is necessary

 Tight processing window



DESCRIPTION

 Simple, powerful programming model

 Language independent

 Can run on a single machine, but shines for 

distributed computing and extreme datasets

 Break down the processing problem into 

embarrassingly parallel atomic operations 



ALGORITHM

Map Phase 

Raw data analyzed and converted to name/value 
pair

 Shuffle Phase

 All name/value pairs are sorted and grouped by 
their keys

 Reduce Phase

 All values associated with a key are processed for 
results



MAPREDUCE WALK THROUGH

 Goal: Construct a word frequency of all the 

words in Wikipedia



STEP 0: SPLIT DATA

 Raw input data divided into N parts

 N > number of machines

 Split must be context specific

Wikipedia Archive

List of Articles

• <article>title1</article>

• <article>title2</article>

• <article>title3</article>



STEP 1: MAP

 Each machine takes/receives a single slice of 

the raw input for mapping

 The map function processes the input file and 

emits a name/value pair of the relevant data

<article>Now is the 
time</article>

Name/Value Pairs

•[“now”, 1]

•[“is”, 1]

•[“the”, 1]

•[“time”, 1]



STEP 2: SHUFFLE

 The results of the map phase are sorted and 

grouped by the key in each key value pair.

All Name/Value Pairs 

•[“python”, 1]

•[“ruby”, 1]

•[“python”, 1]

•[“haskell”, 1]

•[“python”, 1]

Groups of Names to 
Values

•[“haskell”, [1]]

•[“python”, [1,1,1]]

•[“ruby”, [1]]



STEP 3: REDUCE

 Results from shuffle phase divided into M parts

M > number of machines

 Each machine runs a reduction method on a 

part of shuffle results.

Groups of Names to 
Values

•[“haskell”, [1]]

•[“python”, [1,1,1]]

•[“ruby”, [1]]

Results of Reduction

•[“haskell”, 1]

•[“python”, 3]

•[“ruby”, 1]



MAPREDUCE BENEFITS

 Scale

 Processing speed increases with number of 

machines involved

 Reliable

 Loss of any one machine doesn’t stop processing

 Cost

Often built from heterogeneous commodity grade 

computers



USE CASE RESULTS

 Processing time of 1 million records 

Originally ~3 hours

Reduced to 40 minutes on 5 computers



OTHER MAPREDUCE INSTALLATIONS

 Google – Index building

 Visa – Transaction Processing

 Facebook – Facebook Lexicon

 Intelligence Community

 Yahoo/Google – Terabyte Sort

 10 billion, 100 byte records

 Yahoo: 910 nodes, 206 seconds

Google: ~1,000 nodes, 68 seconds



QUESTIONS


