- MAPREDUCE

f’///'/'/rlllmyﬂl I TR

FUNCTIONAL PROGRAMMING

Map
Apply function to transform elements of a list
Return results as a list

Reduce

Apply function to all elements of a list
Collect results and return as a single value

DEFINITION

MapReduce: A software framework to support
processing of massive data sets across
distributed computers

SAMPLE USE CASE

Back end credit card processor
Nightly processing of millions of transactions

Processing requires grouping, sorting, and
merchant wide analysis

Can’t just divide the over all list into equal parts as
further analysis is necessary

Tight processing window

DESCRIPTION

Simple, powerful programming model

Language independent

Can run on a single machine, but shines for
distributed computing and extreme datasets

Break down the processing problem into
embarrassingly parallel atomic operations

ALGORITHM

Map Phase
Raw data analyzed and converted to name/value
pair

Shuffle Phase

All name/value pairs are sorted and grouped by
their keys

Reduce Phase

All values associated with a key are processed for
results

MAPREDUCE WALK THROUGH

Goal: Construct a word frequency of all the
words in Wikipedia

STEP O: SPLIT DATA

» Raw input data divided into N parts
+ N > number of machines

» Split must be context specific

List of Articles
- 0 : ° A I . | 1 : |
Wikipedia Archive <article>titlel</article>

» <article>title2</article>
 <article>title3</article>

STEP 1. MAP

» Each machine takes/receives a single slice of
the raw input for mapping

» The map function processes the input file and
emits a name/value pair of the relevant data

Name/Value Pairs

*[“now”, 1]
° [“iS”, 1]

PY [che"’ 1]
*[“time”, 1]

<article>Now is the

time</article>

STEP 2: SHUFFLE

» The results of the map phase are sorted and
grouped by the key in each key value pair.

All Name/Value Pairs Groups of Names to

° [“python”, 1] ValueS
*[“ruby”, 1] *[“haskell”, [1]]

* [“python”, 1] *[“python”, [1,1,1]]
*[“haskell”, 1] * [“ruby”, [1]]
* [“python”, 1]

TEP 3: RED

m

¥ ' —" Lo N

» Results from shuffle phase divided into M parts
+ M > number of machines

» Each machine runs a reduction method on a
part of shuffle results.

Results of Reduction
e [“haskell”, 1]

Groups of Names to
Values

* [“python”, 3]
*[“ruby”, 1]

e [“haskell”, [1]]
*[“python”, [1,1,1]]
* [“ruby”, [1]]

MAPREDUCE BENEFITS

Scale

Processing speed increases with number of
machines involved

Reliable
Loss of any one machine doesn’t stop processing

Cost

Often built from heterogeneous commodity grade
computers

USE CASE RESULTS

Processing time of 1 million records
Originally ~3 hours
Reduced to 40 minutes on 5 computers

OTHER MAPREDUCE INSTALLATIONS

Google - Index building
Visa - Transaction Processing
Facebook - Facebook Lexicon
Intelligence Community

Yahoo/Google - Terabyte Sort
10 billion, 100 byte records
Yahoo: 910 nodes, 206 seconds
Google: ~1,000 nodes, 68 seconds

/Il

R

