
FAN
http://fandev.org/
Scott Bale
http://kablooie.puredanger.com/

FAN

http://fandev.org
http://fandev.org
http://kablooie.puredanger.com
http://kablooie.puredanger.com

The Real Fan - Richmond, VA

Hello World

class HelloWorld

{

 static Void main()

 {

 echo("hello world")

 }

}

•Runs on JVM or CLR

•Hybrid OO/dynamic language

•Both static and dynamic typing

•First class functions (closures)

•Compiles to JavaScript

•Open Source

•No primitivies or checked exceptions

Elevator Pitch

Fibonacci - The Real Hello World

class Fibonacci
{
 static Void main()
 {
 	echo(fibNum(5))
 }

 static Int fibNum(Int i)
 {
 	if (i==0) return 0;
 	if (i==1) return 1;
 	return fibNum(i-2) + fibNum(i-1)
 }
}

Fibonacci with Function

class Fibonacci
{
 static Void main()
 {
 	echo(fib.call(5))
 }

 const static Func fib := |Int i->Int|{
 if (i==0) return 0;
 if (i==1) return 1;
 // a+b is shortcut for a.plus(b) which is statically typed
 return ((Int)fib.call(i-2)) + ((Int)fib.call(i-1))
 }
}

Slightly Cleaner - Dynamic Invocation

class Fibonacci
{
 static Void main()
 {
 	echo(fib.call(5))
 }

 const static Func fib := |Int i->Int|{
 if (i==0) return 0;
 if (i==1) return 1;
 // below, try a->plus(b) instead to avoid casting
 return fib.call(i-2)->plus(fib.call(i-1))
 }
}

Meet the Creators - Brian and Andy Frank

Why Fan? In their own words...

“Fan is designed as a practical
programming language to make it easy
and fun to get real work done.”

“The beauty of a new language is that it
gives you a clean slate to fix all the little
things that aggravate you (we built Fan
to scratch our own itches). “

“Everything we build for SkyFoundry will
be written in Fan Now we'll be
focused on enhancing and using Fan
full-time.”

Fan Milestones

2005 – Fan begun, designed to be
portable between Java and .NET

12/05 – fandev.org launched

12/05 – pure OO type system

2/06 – fcode (deployment portability)

10/06 – compiler re-implemented in Fan

4/08 – fandev.org implemented in Fan

4/08 - .NET env passes test suite

12/08 – SkyFoundry founded

Introducing the Fan Vending Machine

Fan Portability - Binaries and Libraries

A Fan enum - Coin

enum Coin
{
 nickel(5),
 dime(10),
 quarter(25),
 dollar(100);

 private new make(Int cents) { this.cents = cents; }

 const Int cents;
}

Null-safe types and the Elvis Operator

Obj foo := bar.baz.something

Obj? foo := bar?.baz?.something

Obj? foo := bar?->baz?->something

Null-safe types Example - Inventory.buy()

	 Item? buy(Item item)
	 {
	 	 if (inventory.hasItem(item) &&
bank.purchase(item.cost))
	 	 {
	 	 	 return inventory.remove(item)
	 	 }
	 	 return null
	 }

Function currying with the curry operator &

f := |Int a, Int b, Int c->Str| { return "$a $b $c" }
g := &f(0)
f(0, 1, 2) => "0 1 2"
g(1, 2) => "0 1 2"

Void onPress(|,| callback) {...}
Void pressed(Str what) { echo(what) }

ok.onPress(&pressed("ok"))
cancel.onPress(&pressed("cancel"))

Example of a closure

	 private Int acceptCoins(Int price)
	 {
	 	 Int changeDue := coinsToReturn.reduce(0)
 |Obj change, Coin coin->Obj|
	 	 	 { return (Int)change + coin.cents }
	 	 changeDue -= price
	 	 coins.addAll(coinsToReturn)
	 	 coinsToReturn.clear
	 	 return changeDue
	 }

Dynamic invoke operator ->

a->x a.trap("x", [,])
a->x = b a.trap("x", [b])
a->x(b) a.trap("x", [b])
a->x(b, c) a.trap("x", [b, c])

The -> operator, behind the scenes, generates a call
to sys::Obj.trap()

Obj.trap() is Fan’s “Method-Missing”

override Obj? trap(Str name, Obj?[]? args){
	
	 	 if (name == "info"){
	 	 	 return "demo: $vm"
	 	 } else if (name == "deposit"){
	 	 	 vm.deposit(getListFromMap(args[0]))
	 	 	 return null
	 	 } else if (name == "buy"){
	 	 	 return vm.buy(args[0])
	 	 } else {
	 	 	 return super.trap(name, args)
	 	 }
	 }

Returning correct change

	 private Void makeChange(Int changeDue){
	 	 sortCoins
	 	 coins.eachWhile |Coin coin->Int?|
	 	 {
	 	 	 if (coin.cents <= changeDue)
	 	 	 {
	 	 	 	 coinsToReturn.add(coin)
	 	 	 	 changeDue -= coin.cents
	 	 	 }
	 	 	 return changeDue == 0 ? changeDue : null
	 	 }
	 	 coinsToReturn.each| Coin coin |
{coins.remove(coin) }

Links

• http://fandev.org/

• http://twitter.com/briansfrank

• http://twitter.com/afrankvt

• http://github.com/scottbale

• http://kablooie.puredanger.com/

http://fandev.org/
http://fandev.org/
http://twitter.com/briansfrank
http://twitter.com/briansfrank
http://twitter.com/afrankvt
http://twitter.com/afrankvt
http://kablooie.puredanger.com
http://kablooie.puredanger.com

