5

S~
-
g
O
O
-
©
=
o

2
©
a)
=
)
O
)

htt

3
re)

S
A
<

o
=
.

http://fandev.org
http://fandev.org
http://kablooie.puredanger.com
http://kablooie.puredanger.com

<
1o}
n
O
-
e

IC

:%

The Real Fan

Hello World

class HelloWorld

{

static Void main()

{

echo("hello world")

—levator Pitch

e Runs on JVM or CLR

* Hybrid OO/dynamic language

¢ Both static and dynamic typing

e First class functions (closures)

e Compiles to JavaScript
e Open Source

* No primitivies or checked exceptions

Fibonacci - The Real Hello World

-
class Fibonacci

{

static Void main()

{
echo(fibNum(5))

J

static Int fibNum(Iint i)

{

if (I==0) return 0O;

if (I==1) return 1;

return fioNum(i-2) + fioNum(i-1)

Fibonaccl with Function

-
class Fibonacci

{

static Void main()

{
echo(fib.call(5))

J

const static Func fib := |Int i->Int|{
iIf (I==0) return 0O;
if (I==1) return 1;
// a+b is shortcut for a.plus(b) which is statically typed
return ((Int)fib.call(i-2)) + ((Int)fib.call(i-1))

Slightly Cleaner - Dynamic Invocation

-
class Fibonacci

{

static Void main()

{
echo(fib.call(5))

J

const static Func fib := |Int i->Int|{
iIf (I==0) return 0O;
if (I==1) return 1;
// below, try a->plus(b) instead to avoid casting
return fib.call(i-2)->plus(fib.call(i-1))

Meet the Creators -

Srian and Andy Frank

Why Fan” In their own words...

“Fan Is designed as a practical
programming language to make it easy
and fun to get real work done.”

“The beauty of a new language is that it
gives you a clean slate to fix all the little
things that aggravate you (we built Fan

to scratch our own itches). “
\\

“Everything we build for SkyFoundry will _
be written in Fan Now we'll be > 4
focused on enhancmg and using Fan

full-time.”

Fan Milestones

2005 - Fan begun, designed to be
portable between Java and .NET

12/05 — fandev.org launched
12/05 — pure OO type system

2/06 — fcode (deployment portability)

10/06 — compiler re-implemented in Fan
4/08 — fandev.org implemented in Fan
4/08 - .NET env passes test suite

12/08 — SkyFoundry founded

Introducing the Fan Vending Machine

¥ = vendingmachine-fan
¥ [= fan
Banlk.fan
Coin.fan
Inventory.fan
ltem.fan
Main.fan
VendingMachine.fan
VendingMachineDemo.fan
¥ [test
TestBank.fan
Testlnventory.fan
TestVendingMachine.fan
biuild .fan
fib.fan
HelloWaorld.fan
=] README.txt

Portabllity -

Sinaries and Libraries

A Fan enum - Coin

(

enum Colin

{
nickel(d),
dime(10),
quarter(25),
dollar(100);

private new make(Int cents) { this.cents = cents; }

const Int cents;

Null-safe types and the Elvis Operator

" Obj foo := bar.baz.something

Obj? foo := bar?.baz?.something

Obj? foo := bar?->baz?->something

Null-safe types Example - Inventory.buy()

-

ltem? buy(ltem item)

{

iIf (inventory.hasltem(item) &&

bank.purchase(item.cost))

1
J

return null

return inventory.remove(item)

Function currying with the curry operator &

[f = Int a, Int b, Int c->Str| { return "$a $b $c" }
g := &f(0)

0,1,2) => "012"

g(1,2) => "012"

Void onPress(|,| callback) {...}
Void pressed(Str what) { echo(what) }

ok.onPress(&pressed("ok"))
cancel.onPress(&pressed(”cancel))

—xample of a closure

-

private Int acceptCoins(Int price)
{
Int changeDue := coinsToReturn.reduce(0)
|Obj change, Coin coin->0bj|
{ return (Int)change + coin.cents }
changeDue -= price
coins.addAll(coinsToReturn)
coinsloReturn.clear
return changeDue

Dynamic iInvoke operator ->

The -> operator, behind the scenes, generates a call
to sys::ODbj.trap()

1)
. [b)
. [b])
[b,)

a->X a.trap("
a->x =b a.trap(”
a->x(b) a.trap("
a->X(b, c) a.trap("

X"
X"
X"
XII

Obj.trap() is Fan’s “Method-Missing”

" override Obj? trap(Str name, Obj?[]? args){

if (hame == "info"){
return "demo: $vm"

} else if (hame == "deposit"){
vm.deposit(getListFromMap(args|0]))
return null

} else if (hame == "buy"){
return vm.buy(args|0])

} else {
return super.trap(hame, args)

Returning correct change

_

private Void makeChange(Int changeDue){
sortCoins
coins.eachWhile |Coin coin->Int?|

{

If (coin.cents <= changeDue)
{
coinsToReturn.add(coin)
changeDue -= coin.cents

}

return changeDue == 0 ? changeDue : null

}

coinsToReturn.each| Coin coin |
{coins.remove(coin) }

LINksS

e http://fandev.org/

e http://twitter.com/briansfrank

o http://twitter.com/afrankvt

e http://github.com/scottbale

e http://kablooie.puredanger.com/

http://fandev.org/
http://fandev.org/
http://twitter.com/briansfrank
http://twitter.com/briansfrank
http://twitter.com/afrankvt
http://twitter.com/afrankvt
http://kablooie.puredanger.com
http://kablooie.puredanger.com

