
Monads are Burritos
Michael Easter
http://codetojoy.blogspot.com

http://codetojoy.blogspot.com
http://codetojoy.blogspot.com

There is no Burrito: we all must find our own.

The Promised Land is a journey, just as it was for objects, recursion, etc

Our Master of Ceremonies
is

http://demetrimartin.com

A cerebral comic with
jokes such as:

What is the smartest thing anyone
has said that starts with “Dude” ?

http://www.demetrimartin.com
http://www.demetrimartin.com

“Dude, we removed a kidney and you’re going to be fine.”

“Dude, these are isotopes!” -- excellent but we can top that

•pure functional

•strong, static typing

•modular, and not OO

•lazy evaluation

Haskell

Iterative, location-based programming is a scourge

tuple a b = do {
 x <- a ;
 y <- b ;
 return (x,y)
 }

This was presented as pseudo-code of iterative programming, but it is in fact valid Haskell.

f : N -> R

f (x) = | √x |

f (100) = 10

f (3.14) = ?

f (-2) = ?

Functions in mathematics

Reviewing the notion of
domain and range for math
functions

Type Signatures in Haskell

f : N -> R in math

in Haskell:

f :: a -> b (eg String -> Integer)

g :: a -> a -> b (eg String String -> Integer)

h :: a -> (a -> b) -> b (eg String f -> Integer)

Maybe type

data Maybe a = Nothing | Just a

Just “Lambda Lounge” :: Maybe String

Just 10 :: Maybe Integer

Maybe is a wrapper type. ‘a’ here is a type variable

Monad:

1. Type constructor m (eg Maybe)

2. injection function: a -> m a

3. chain function:
 m a -> (a -> m b) -> m b

Due to variance within this structure, there
are many instances of monads in Haskell.

For a monad m, in Haskell:

1. injector is return = a -> m a

2. chain is called bind. Symbol is >>=
 m a -> (a -> m b) -> m b

Monad use support
Maybe short-circuit n/a
Logger state runLogger

IO impure IO putStrLn
STM concurrency atomically

record “any” =
Logger ((), [“any”])

ezRegex “abc” =
Logger (“abc”, [])

return (‘.’ ++ “abc”) =
Logger (“.abc”, [])

The logger example inspired by Real World Haskell.

record “any” =
Logger ((), [“any”])

globToRegex “abc” =
Logger (“abc”, [])

return (‘.’ ++ “abc”) =
Logger (“.abc”, [])

((), [“any”])

(“abc”, [])

(“abc”, [“any”])

record “any” =
Logger ((), [“any”])

globToRegex “abc” =
Logger (“abc”, [])

return (‘.’ ++ “abc”) =
Logger (“.abc”, [])

((), [“any”])

(“abc”, [])

(“abc”, [“any”])

(“.abc”, [])

(“.abc” , [“any”])

Wrap up that burrito

• Monads are a combination of structure and variance

• Myth: monads are hard (see Maybe)

• Myth: monads are only used for IO

• Myth: monads are only in Haskell (OCaml, C++, etc)

Wrap up that burrito

Dude, a monad is a burrito,
if a burrito is a functor-like object
with a generic type, a sense of
encapsulation, and the ability to

combine large computations out of
smaller ones.

Syntactic sugar (bonus section)

tuple :: (m x) -> (m y) -> (m (x,y))

tuple a b = a >>= \x ->
 b >>= \y ->
 return (x,y)

This behaviour of this code (and next slides) changes depending on
which monadic values are passed in.

Syntactic sugar

tuple a b = do {
 x <- a ;
 b >>= \y ->
 return (x,y)
 }

Machine translatable from previous slide

Syntactic sugar

tuple a b = do {
 x <- a ;
 b >>= \y ->
 return (x,y)
 }

Read right to left: ‘a’ is a monad; the highlight is a function with parameter ‘x’. The inner
type is removed from ‘a’ and fed into this function.

Syntactic sugar

tuple a b = do {
 x <- a ;
 y <- b ;
 return (x,y)
 }

Now, the same is done with monad ‘b’ and the value ‘y’.

Syntactic sugar

tuple a b = do {
 x <- a ;
 y <- b ;
 return (x,y)
 }

Dude, a monad
is a

programmable
semi-colon !

This was presented speciously as the ‘scourge’ of iterative programming, but it is in fact
sugared Haskell syntax for monads.

My sincere thanks to everyone at the Lambda Lounge
for the chance to learn and explore monads. I would
never have learned as much without the group.

Blog: http://codetojoy.blogspot.com

Twitter: http://twitter.com/codetojoy

Photos from iStockPhoto.com

http://codetojoy.blogspo
http://codetojoy.blogspo
http://twitter.com/codetojoy
http://twitter.com/codetojoy

