Monads are Burritos

Michael Easter
http://codetojoy.blogspot.com

http://codetojoy.blogspot.com
http://codetojoy.blogspot.com

c
3
o
.
3
o
ke,
S
Y
Y
2]
3
£
=
S
)
2
2
S
S
A
o)
S
2
~
£
~

The Promised Land is a journey, just as it was for objects, recursion, etc

Our Master of Ceremonies
S
http://demetrimartin.com

A cerebral comic with
jokes such as:

What is the smartest thing anyone
has said that starts with “Dude” 7

http://www.demetrimartin.com
http://www.demetrimartin.com

~

&) \ _

’

“Dude, we removed a kidney and you’re going to be fine.”

“Dude, these are isotopes!” -- excellent but we can top that

Haskell

epure functional
estrong, static typing
e modular, and not OO

e|azy evaluation

[terative, location-based programming is a Scourge

tuple a b = do {
X <-a;
y <-D;

return (x,V)

This was presented as pseudo-code of iterative programming, but it is in fact valid Haskell.

Functions iIn mathematics

f:N->R

f(x) = [JX]|

f(100) = 10

Reviewing the notion of
domain and range for math
functions

Type Signatures in Haskell

f:N->Rinmath

IN Haskell:

f::a->b (eg String -> Integer)

g ::a->a->b (eg String String -> Integer)

h:a->(a->b)->b(eg String f -> Integer)

Maybe type

data Maybe a = Nothing | Just a

Just “Lambda Lounge” :: Maybe String

Just 10 :: Maybe Integer

Maybe is a wrapper type. ‘a’ here is a type variable

Monad:

1. Type constructor m (eg Maybe)

2. Injection function: a -> m a

3. chain function:
ma->@->mb)->mb

Due to variance within this structure, there
are many instances of monads in Haskell.

For a monad m, in Haskell:

1.Injectorisreturn =a ->ma

2. chain is called bind. Symbol is >>=
ma->@->mb)->mb

use

support

short-circult

n/a

state

runLogger

impure O

putStrln

concurrency

atomically

record “any” =
Logger ((), ["any’])

ezRegex “abc” =
Logger (“abc’, [])

return (. ++ “abc”) =
Logger (“.abc”, [])

The logger example inspired by Real World Haskell.

record "any” =))
Logger (0, [“any’) (0, ["any™])

(“abc”, [])

(“abC” , [“any”])

globToRegex “a
Logger (“abc”, |

return (°.” ++ “abc”) =
Logger (“.abc”, [])

record “any” =))
Logger (0, [“any’]) (0, ["any™])

(“abc”, [])

(“abC” , [“any”])

globToRegex “abc” (“.abc”, [])

Logger (“abc”, |

(“_abC” , [“any”])

return (°.” ++ “abc”) =
Logger (“.abc”, [])

Wrap up that burrito

e Monads are a combination of structure and variance

e Myth: monads are hard (see Maybe)

e Myth: monads are only used for 10

e Myth: monads are only in Haskell (OCaml, C++, etc)

Wrap up that burrito

encapsulation, and
combine large comp

Dude, a monad Is a burrito,
if a burrito Is a functor-like object
with a generic type, a sense of

the abillity to
Jtations out of

smaller or

eS.

Syntactic sugar (bonus section)

tuple :: (M X) -> (M y) -> (M (X,y))

tupleab =a>>=\x->
0 >>=1\y ->
return (X,y)

This behaviour of this code (and next slides) changes depending on
which monadic values are passed in.

Syntactic sugar

tuple a b = do {
X<-a;
0D >>=\y ->
return (x,y)

Machine translatable from previous slide

Syntactic sugar

tuple a b = do {
X<-a:;

 b>>=\y >
return (x,V)

Read right to left: ‘a’ is a monad; the highlight is a function with parameter x’. The inner
type is removed from ‘a’ and fed into this function.

Syntactic sugar

tuple a b = do {
X<-a;
y<-D;
return (x,y)

Now, the same is done with monad ‘b’ and the value ‘y’.

Syntactic sugar

tuple a b = do { Dude, a monad

X<-a:; IS a
y<-b: programmable

return (x,y) semi-colon !

This was presented speciously as the ‘scourge’ of iterative programming, but it is in fact
sugared Haskell syntax for monads.

My sincere thanks to everyone at the Lambda Lounge
for the chance to learn and explore monads. | would
never have learned as much without the group.

Blog: http://codetojoy.blogspot.com

Twitter: http://twitter.com/codetojoy

Photos from iStockPhoto.com

http://codetojoy.blogspo
http://codetojoy.blogspo
http://twitter.com/codetojoy
http://twitter.com/codetojoy

