


Objective-C 2.0

A brief history

What it looks like

How it works

The ties that bind



Objective-C 2.0
A brief history

Thank you Wikipedia



Objective-C .1
Developed in the 1980’s, by Brad Cox 
and Tom Love

Add Smalltalk style Object Oriented 
Messaging to a compiled language

Extensions to the C compiler

Thin strict superset

Tiny and fast runtime

Sma
llta

lk 
ran

 on
 

a v
irtu

al 
mac

hin
e

Warts ‘n’ All!



Objective C 1.0
Licensed and reimplemented by NeXT in 
1988 

NeXT’s advanced system libraries 
(OpenStep) made possible by dynamics 
of the language

1996 Apple acquired NeXT

OpenStep became MacOSX
Steve Jobs took control

No Legacy Code



Objective C++

Thin strict superset of C++

Takes advantage of C++’s language 
features

Some rules to obey for mixing OO 
features.

More Warts!

Do no
t cro

ss th
e 

beam
s! 



Objective C 2.0

OpenStep remains advanced under 
continual development in MacOSX 

Language features added to complete 
with other languages and simplify 
development



Objective C 2.0
What it looks like

Verbose



CLASS MESSAGES

@interface Dishwasher : NSObject
{
// Private data definition

NSString* model;
}

- (void) startAtTime: (NSTime*) time withDishes: (NSArray*) dishes andAddRinseAgent: (bool) addRinseAgent;

@end

Non-primitives inherit from NSObject

Classes
 are 

called 
Interfa

ces

Messages are a series 

of named parameters
Types are NOT part of the signature

@implementation Dishwasher

- (void) injectGallansOfWater: (float) gallons inSeconds: (float) seconds
{
}

- (void) startAtTime: (NSTime*) time withDishes: (NSArray*) dishes andAddRinseAgent: (bool) addRinseAgent
{
	 [self injectGallansOfWater: 4.5 inSeconds: 20.0];
}

@end

Private methods need not 
be in public header file

Send a message



PROTOCOL ADHERENCE

@interface Dishwasher : NSObject <Appliance>
{
// Private data definition
}

@end

Interfa
ces ar

e 

called 
Protoco

ls

Static Factory Methods 

are common

Protocol Adherences are specified here

@implementation Dishwasher

- (NSColor*) getColor() 
{

return [NSColor colorWithComponents: 1.0, 1.0, 1.0];
}
@end

Optional implementation is a 
private implementation detail

@protocol Appliance

- (NSColor*) getColor;

@end



CATEGORIES

int main()
{

Appliance* myAppliance = [Dishwasher newDishwasher];
[myAppliance doEverything];

}

Reopen an interface

@implementation Dishwasher (DavesAppliance)

- (void) doEverything: (NSArray*) everything;
{
}

@end

Method injected at Runtime

@interface Appliance (DavesAppliance)

- (void) doEverything: (NSArray*) everything;

@end

Implement new methodusing no direct members

No Dat
a Defin

ition



Objective C 2.0
How it works

Rather Well



Messages
Message Signatures are in a global pool

Every Message has a compile time GUID

Message sending uses GUID

Mutable class message tables created at 
runtime

Null objects or unknown (per instance) 
messages are dropped

Don’t go changing the types!

Forwarding
 

Mechanism
 AvailableObjects easily 

Swizzled



ACCESSING LOW LEVEL RUNTIME

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

- (IMP)methodForSelector:(SEL)aSelector

- (BOOL)respondsToSelector:(SEL)aSelector

{ 
SEL methodToExecute = @selector(doEverything);
//SEL methodToExecute = sel_getUid("doEverything")
[myAppliance performSelector: methodToExecute withObjects: everything];

}

You ca
n get 

a 

method
’s GUID

And send the 
message yourself

Every instance has 
methods to query the runtime

- (retval_t) forward:(SEL) sel :(arglist_t) args

Overrid
e this 

to 

forwar
d unkn

own 

messag
es

There are many th
read and schedulin

g 

options for perform
Selector

- (BOOL)isKindOfClass:(Class)aClass

- (BOOL)isMemberOfClass:(Class)aClass

Class is an opaque
 type



New Features in 2.0
Properties

Member access semantics with get/set as private 
implementation

Automatic bindings support

Fast Enumeration
“For Each” on NSFastEnumeration protocol

Protocol Implementations
Default implementations for protocol methods

Protocol Enforcements
Required and Optional flags on methods

64bit rewritten runtime

Poor Resource Management



PROPERTIES

@interface TrackDef : TrackElement {
@protected
	 NSSize size;
	 NSArray* anchors;
}

@property (nonatomic, readonly) NSString* name;
@property (nonatomic, readonly) NSSize size;
@property (nonatomic, readonly) NSArray* anchors;

@end

@implementation TrackDef

@synthesize size;
@synthesize anchors;

- (NSString*) name {
	 return @”Obj-C Rocks!”;
}

@end

Synthesized properties 
must have data members

Propertie
s can ha

ve public
 getter 

and sette
r messag

es manuf
actured

NSString* theName = myTrackDef.name;



Objective-C 2.0
The ties that bind

Making better apps



Automatic Bindings
All support for dynamic bindings 
included in every instance

Compiler aware of binding’s informal 
protocols

Introspection methods built in for 
bindings

Persistable

Simple Informal Protocol
Grammar support for property transformations and 
aggregation

Only if Java was this easy!



NSKEYVALUECODING

Getting Values
	 	 – valueForKey: 
	 	 – valueForKeyPath: 
	 	 – dictionaryWithValuesForKeys: 
	 	 – valueForUndefinedKey: 
	 	 – mutableArrayValueForKey: 
	 	 – mutableArrayValueForKeyPath: 
	 	 – mutableSetValueForKey: 
	 	 – mutableSetValueForKeyPath: 
Setting Values
	 	 – setValue:forKeyPath: 
	 	 – setValuesForKeysWithDictionary: 
	 	 – setNilValueForKey: 
	 	 – setValue:forKey: 
	 	 – setValue:forUndefinedKey: 
Changing Default Behavior
	 	 + accessInstanceVariablesDirectly 
Validation
	 	 – validateValue:forKey:error: 
	 	 – validateValue:forKeyPath:error: 

NSObject adheres to this Protocol

Runtim
e Prop

erty 

Queries



NSKeyValueCoding is NSObject’s 
Protocol for Property introspection



Informal Protocol

iChat Video Effects

Screen Savers

Music Visualizers

etc

A Set of Property Names as part of a Contract used for dynamic 
and loose bindings - often used for plugins



No Code is Good Code

Bindings specified by string paths

String paths may contain transformation 
and aggregate functions

Bindings persisted with objects

UI is persistable object map NO CODE GENERATION!!!

Demonstrate “Codeless” Application...


