pronounced the same as ‘closure”

A Clojure

“It (the logo) was designed by my brother, Tom Hickey. “It | wanted to involve ¢ (¢#), | (lisp) and j (java).

| don't think we ever really discussed the colors Once | came up with Clojure, given the pun on closure,
representing anything specific. | always vaguely the available domains and vast emptiness of the
thought of them as earth and sky.” - Rich Hickey googlespace, it was an easy decision..” - Rich Hickey

R. Mark Volkmann
markeociweb.com

Janvary 2009 7

— I

OgjecT COMPUTING, INC.




Core Beliefs ...

* Functional programwming is important

* helps with concurrency issues
*  ewergence of multi-core processors makes this an issue for all kinds of applications
* locking is too hard to use correctly
*  jmwutable data along with other mechanisws is easier
* provides performance optimization
*  through code reordering by compiler
* can make code easier to understand and test Side-effects include:
*  the result of functions with no side-effects only depends on arguments changing values of global variables

* Java platform (JVM) is the place to e SRl

* portability, stability, performance, security

* access fo existing Java libraries
* 1o need to reinvent libraries for file 170, database access, XML, and so on

c I Oj U re OgJeCT COMPUTING, INC.




Clojure

... Core Beliefs

* Pynawic types and polymorphism are good

%k

see multimethods

* Lisp-like syntax is good
* code and data have same representation
* transformation from Java syntax fo Lisp syntax

*  wmove { in method definitions to beginning // Java
: : public void hello(String name) {
* replace { with (and } with) System.out.println("Hello, " + name) ;
*  rewmove types (can specify type hints) }
*  remove commas from argument lists "
: A ; Clojure
* rimm./e siwucolon statement terminators (defn hello [name]
* |ess “hoise” than Java (4 -> 2 helow) (println "Hello," name))
myFunction (argl, arg2); -> (myFunction argl arg2)
> o
(G ) I
3 .




Side Effects

S l“ g ene ral N fU "c'ﬁo nss hO Uld “Of “sing purely functional programming is also

not very useful since, if we allow no side

* rely on global data values (only their arguments) Errfrmawmivirrsttmpmee
* modify global data valves heat up the CPU” - Simon Peyton Jones
* perform1/0

* Especially for functions invoked in a transaction

* because they may be invoked more than once
if the transaction must be rerun

* Sowme benefits

* makes functions easier to understand and test
* allows their execution to be reordered and parallelized

* It's up to you to avoid side effects

* Clojure doesn’t prevent them Clojure does provide the function
which takes a set of expressions fo execute.

If it is executed inside a transaction, an
is thrown.

c I Oj U re 4 OgJeCT COMPUTING, INC.




Clojure

Clojure Key Features...

* Functional, inspired by other languages
* Lisp (syntax), Haskell (lazy evalvation), ML, Erlang

* Concise

* results in shorter programs which are easier to write and maintain
* Lisp syntax

*  with enhancements

* codeis data: can modify the language using the language

* Runs on JVM

* popular, efficient platform that is constantly being improved
* |arge number of available libraries

* Java interop
* can call Java methods from Clojure code and Clojure code from Java

OBJECT COMPUTING, INC.




Clojure

... Clojure Key Features

* Sequences - logical lists

* examples include all Clojure and Java collections,
streawms, directory structures and more

* Goncurrency without locks

* important for multi-threaded, multi-processor applications
* gee refs, agents and atowms

OBJECT COMPUTING, INC.




Getting Clojure

* Prebuilt

* download from http:/clojure.org
* From source

* svn co http://clojure.googlecode.com/svn/trunk/ clojure-read-only
* cd clojure-read-only

* ant clean jar

* clojure-contrib from source

* the ‘standard library”
* ot well-documented yet: see examples in source

* svn co http://clojure-contrib.googlecode.com/svn/trunk/ \
clojure-contrib-read-only

* cd clojure-contrib-read-only

* ant clean jar

<

c I Oj U re 7 Omsc_T‘CcmrunNG. INC.




REPL

* Read Eval Print Loop

* an interactive shell for experimenting with Clojure code

* like Ruby’s irb

* the “reader” reads program text and produces data structures (mostly lists)
* these are evaluated to obtain results that are printed

* To start, run clj seript - see next slide
* To load code from a ﬁle, (load-file "file-path")

* Special variables
* result of last three evalvations are saved in *1, *2 and *3

* last exception is saved in *e
* foseestack tfrace (.printStackTrace *e)

* To exit, press ctrl-d or ctrl-¢

; <]

c I Oj U re OgJeCT COMPUTING, INC.




Running Clojure Code

* (Create a script like this named clj - why isnt this supplied?
* see http:/enwikibooks.org/wiki/Clojure_Programming/Getting_Started

#!/bin/bash

# Runs Clojure on a script file or interactively using a REPL.
CLOJURE_JAR=$CLOJURE DIR/clojure-read-only/clojure.jar
CONTRIB_JAR=$CLOJURE DIR/clojure-contrib-read-only/clojure-contrib. jar

BREAK_CHARS="() {} [],~%$#@\"\";: " "|\\"

CP=$CLOJURE JAR:SCONTRIB JAR:S$JLINE JAR rlwrap supports tab completion, paren matching,
e i 3 command recall across sessions, and vi or emacs keystrokes.

See http:/utopia.knoware.nl/"hlub/uck/rlwrap/.
Another option is JLine.

# If there are no command-line arguments ...
if [ -z "$1" ]; then
rlwrap --remember -c -b $BREAK CHARS -f $HOME/.clj completions \

java -cp $CP clojure.main --init ~/user.clj --repl
else

java -cp $CP clojure.lang.Script $1 -- $*

fi
For wmore options, run
Ol

c I Oj U re 9 OgJeCT COMPUTING, INC.




Clojure

Hello World!

* hello.clj
(println "Hello World!")

Alternative

%k To run Add as first line of .clj files.

Run with
$ clj hello.clj

* To get documentation on any function,
even ones you wrote

$ clj The function generates a description of
the allowed arguments from the code and outputs

user=> (doc function-name) ' (7l i e dlb R ER D)

* To get documentation on all functions whose name
or documentation match a given regex

$ clj
user=> (find-doc "regex-string")

10

For example, to find
all the predicate functions,
< j

OBJECT COMPUTING, INC.




Clojure

Invoking From Java -
Option 1

* Frowm a Java application,
read a text file containing Clojure code
and invoke specific functions it defines

import clojure.lang.RT;

import clojure.lang.Var;

// path must be in CLASSPATH
RT.loadResourceScript ("path/name.clj") ;
Var function = RT.var ("namespace", "function-name") ;

function.invoke ("argl", "arg2", ...);

11

.
\ ‘8

OBJECT COMPUTING, INC.




Clojure

Invoking From Java -
Option 2

* Cowmpile Clojure code to bytecode
and use it from a Java application
just like any other Java code

* easy if your Clojure code implements an existing Java interface
(ns namespace

(:gen-class :implements [java-interface]))

(defn -function-defined-in-interface [this argl arg2 ...]

oD
* Note

* defn names for functions defined in the interface begin with ™
* every method takes an extra, first "this' argument

* o generate the .class file, use
(compile namespace) 0f clojure.lang.Compile

12




Books

* Qnly one now ... “Programming Clojure”
* Stuart Halloway, Pragmatic Programmers up
* Website , SuartHllovay
* hitp:/pragprog.com/titles/sheloj/programming-clojure
* has example code, errata and a forum

* Running example code

$ clj
user=> (require 'examples.introduction)

user=> (take 10 examples.introduction/fibs)

* take returns a lazy sequence of the first n items in a collection

* hawmespaces are separated from names by a /
* examples.introduction is the namespace of the £ibs function

<

c I Oj U re 1 3 Omsc_T‘CcmrunNG. INC.




Processing Order

* Read-time

* reader macros and “normal” macros are converted to non-macro forms
* wmacros only evaluate their arquments if and when directed to do so

* Compile-time
* forws, including function calls, are compiled to Java bytecode
* not interpreted

* Run-time
* Java bytecode is executed
* functions evalvate all their arguments before running

<

c I Oj U re 1 4 OgJeCT COMPUTING, INC.




Clojure

Forwms

* The Clojure “reader” looks for forms in program text

and creates data structures from them
* Supported forms include

£ 3

¥ OX X X *

¥ X X R ¥

vector - [ item* ] - similar to alist, but indexable like an array (w/ get)
set - #{ item* } -likelist, but no duplicates empty lists
\map - { item-pair* } -eachitem-pair isa key and value separated by a space ) G themselves

keywords and symbols have a name
15 and an optional namespace

All forms except symbols

and lists are literals,
i.e. they evalute to themselves.

(no value - nil; treated as false in boolean contexts; same as Java's null )

boolean - true or false is a ratio that will

character - \char, \newline, \space, \tab - Uses java.lang.Character be represented by

number - integer, decimal or ratio; automatically uses Biglnteger when needed Ma.’rh “fiﬂ" ra’ri_o§

] ; : ] ) maintains precision.

kkeyword - hame that begins with :; like Java interned Strings H
(symbol - names things like variables and functions evalvates to the symbol
(*  composed of letters, digits (not first), + - / | 2 . _ j
(string - "char*" - uses java.lang.String mojure co"ecﬁon@

list- ' ( item* ) - allows duplicates; not indexable lists are evalvated literally

only if they are quoted

evalvate

<

OBJECT COMPUTING, INC.




Clojure

Clojure Collections

%k I“clude See diagram showing relationships at

%k

http:/tinyurl.com/clojure-classes

lists - ' (items) or (list items)

*  asingly linked list

*  without the quote it is evalvated as a function call
vectors - [items] or (vector items)

* adynawic array; can be treated as a map with integer index keys

*  often used in place of lists to avoid need to quote
to avoid being evaluated as a function call

sefs - #{items} or (hash-set items)
*  jtems must be unique

maps - #{pairs} or (hash-map pairs)
*  associative array of key/value pairs

sorfed-set - (sorted-set items)

sorfed-map - (sorted-map pairs)
and (sorted-map-by comparator pairs)

and more that are used internally @-
16

OBJECT COMPUTING, INC.




Clojure

... Clojure Gollections ...

* All are immutable

* All are heterogenous
* can hold a variety of types

* All are “persistent”

* ‘support efficient creation of modified versions
by utilizing struetural sharing”
*  works because they are immutable

* hot related to persistent storage
*  see http:/enwikipedia.org/wiki/Persistent_data_structure

17

<

OBJECT COMPUTING, INC.




Clojure

Vectors

* To creafe
% [:a 2 "three"]
% (vector :a 2 "three")
% (vec another-collection)

* To access elements

* indexes are zero-bhased
(def my-vector [2 5 7])

%k
* (get my-vector 1) -> 5 -retfurns nil if index is out of bounds
* (nth my-vector 1) -> 5 -can throw IndexOutOfBoundsException
* (my-vector 1) -> 5 -vectorsarea function of their indexes
* integers are not functions of veetors - cant use (1 my-vector)

18

e
; -




Clojure

Sets

* To create
* #{} -anewmpty set
* #{:a 2 "three"}
* (set :a 2 "three")

* To put an empty set into a variable,
(def mySet (ref #{}))

* To add a value to the set,
(dosync (commute mySet conj value))
* dosync evalvates its argument in an STM
* yikes that’s verhose!

* To dereference the set from the variable
* (deref mySet)

19




Maps ...

* To create
* { keyl valuel key2 value2 ... }

* often keywords are used for keys because comparing thewm is fast
*  can get the name of a keyword as a string - (name :foo) -> "foo"

* (def my-map {:a 1 :b 2})
* To get the value of a key, returning nil if not found

* (get map key) Or (get map key not-found-value)
* maps are functions of keys and keys are functions of maps

* (map key) or (key map)

% (my-map :b) or (:b my-map)

* To get an entry, returning nil if not found RGN

to get pieces of an entry

* (find map key)
* (find my-map :b) -> <:b 2> (printed form of an entry)

<

c I Oj U re 20 OgJeCT COMPUTING, INC.




Clojure

.. Maps

* To determine if a key is present

* (contains? map key)

* To get a new map with entries added

* (assoc map key value key value ...)
* (assoc my-map :c 3 :d 4)

* To get a new map with entries removed

* (dissoc map keys)
* (dissoc my-map :a :c)

* To get all the keys or all the values as a sequence

* (keys map)
% (values map)

21




Clojure

Sequences ...

* Logical list of things: view on a collection

* notadata structure
* ot a copy of the collection

* lmmutable

* Supported by classes that
implement the clojure.lang.ISeq interface

* extends clojure.lang.IPersistentCollection

* Many types can be treated as sequences

* Clojure and Java collections, strings, regex matches,
streams, XML, directory structures, SQL results

* wost functions that operate on “seq-able” things
begin by calling seq on their argument

* when treating a map as a sequence,
each key/value pair is a vector containing the key and valuve

22




Clojure

.. Sequences

* Operations supported for all sequences

3 : i i Thelisp  function stands for
* getffirst- (first seq)' instead Of.Llsp car BRER Sl
* getrest- (rest seq) instead of Lisp cdr Thelisp  function stands for

*  refurns a new sequences with the first item removed or
nil (not an empty sequence; logically false) if the sequence only contains one item

*  pice because nil is logically false whereas an empty list is not

‘tontents of the decrement register”,

* ‘construet” new sequence with one item added to front ‘}éz’;grs at ;ffg::fl
* (cons item seq) sameas Lisp cons Maps key/valve entries or

*  canusually use conj instead whole other maps.

* ‘conjoin” itewms fo a sequence to create a new sequence

*  where the itewms are added depends on the collection type
* (conj seq items)

* gefsize- (count seq)
create a new, empty collection of the same type - (empty seq)
* many sequence function eliminate the need to write loops

*

23

OBJECT COMPUTING, INC.




Lazy Sequences

* Most sequences are lazy

* items are only evalvated when requested
* allows processing of sequences that are larger than the available memory
% can force evaluation of all items with doal1 function

* Examples of creating a lazy sequence

(defn £ [x] (/ (* x x) 2.0)) can also use ;
(take 5 (map £ (iterate inc 0))) : and proxies to
implement lazy sequences
(defn next-value [x]
(println "next-value: x =" x) ; so we know if invoked
(+ x x 1))

(let [start-value 2
my-sequence (iterate next-value start-value)]

(doseq [x (take 3 my-sequence)] (println x)))

c I Oj U re 24. Osject ru-rmc. INC.




StruetMaps ...

* lmmutable maps used in place of Java Beans

* Qptimized

* each instance shares a common set of keys, so doesnt need to repeat them

%k

can add entries with new keys not defined for the struet

* To define

%k
%k
%k

Clojure

use keywords for keys (start with a colon)
longway - (def name (create-struct key+))

short way - (defstruct name key+)

* defstruct is a macro which can be changed if needed,
for example, to add logging of instance creation

proper hashCode and equals wmethods are generated
example

* (defstruct car-struct :make :model :year :color)

25

OBJECT COMPUTING, INC.




.. StructMaps ...

* To create an instance

% (struct name value+)
*  where the order of the values matches the order of the keys

x example e lont D

* (def car (struct car-struct "Toyota", "Prius", 2009, Color/YELLOW)

* To access fields
* structs are maps

% (println (car :year) (car :model)) ; outputs 2009 Prius

" i

c I Oj U re OgJeCT COMPUTING, INC.




.. StructMaps

// Java way

public class Car {
private String make;
private String model;

private int year;

public Car(String make, String model, int year) {
this.make = make;
this.model = model;
this.year = year;
}
public String getMake() { return make; }
public String getModel () { return model; }
public String getYear() { return year; }

Car ¢ = new Car("BMW", "Z3", 2001);

System.out.println("The year is " + c.getYear);

Clojure 27

; Clojure way

; Define a struct (actually a StructMap) for cars.

(defstruct car :make :model :year)

; Optionally define an accessor function.

(def year (accessor car :year))
(let

; Create a struct instance.

[c (struct car "BMW" "Z3" 2001)]

(println "The year is" (c :year))

; Same using the accessor function.

(println "The year is" (year c))

U -

OBJECT COMPUTING, INC.




Clojure

Pestructuring

* Functions can take a collection and
extract parts of it in the arguwment list
* supporfed by defn, £n, 1let and loop
* With lists
(defn add-2nd-and-3rd [[_ p2 p3]] (+ p2 p3))
(add-2nd-and-3rd [3 4 5 6]) -> 9

* With maps

(defstruct car :make :model :year :color)

(defn print-color-and-model [{c :color m :model}]
(println c m))

(def my-car (struct car "BMW" "Z3" 2001 "yellow"))
(print-color-and-model my-car)

28

e
; -




Clojure

Defining Functions

* Example - need a different example from book

(defn greet [name]
(println (str "Hello " name)))

* str converts a list of arguments to strings
and concatenates them

* puts the function greet” into the default namespace “vser”
*  full name is user/greet

* Can also have a different body for each arity

(defn my-function

([1 (prn "no ags"))
([x] (prn "one arg"))

([x y] (prn "two args'")))

29




